Experimental cooperative evolution

Blogging about Peer-Reviewed ResearchA paper in Nature this week describes how a few mutations can alter the interactions between species in a biofilm from competitive to cooperative system. This is a great study that goes from start to finish on studying community interactions, looking at an evolved phenotype, and understanding the genetic and physiological basis for the adaptation.

Acinetobacter sp. and Pseudomonas putida were raised in a carbon-limited environment with only benzyl alcohol as the carbon source. Acinetobacter can processes the benzyl alcohol, while P. putida is unable to. Acinetobacter takes up the bezyl alcohol and secretes benzoate that P. putida can then use as a carbon source. The research group propagated these in chemostats and looked at different starting concentrations of the organisms. They found that evolved P. putida had a different morphology and did several experiments to determine the relative fitness of the derived and ancestral genotype.

They went on to also map the mutations in P. putida and found two independent mutations in wapH (I think this is the right gene)—a gene involved in lipopolysaccharide (LPS) biosynthesis. They then engineered the ancestral strain to have a mutation in P. putida and found the rough colony phenotype morphology indistinguishable from the strain derived from experimental evolution.

There are various evolutionary and niche adaptation implications arising from this study. One application to mycology is to how lichens evolved in that an algael cell and a fungal cell must communicate and cooperate.

Leave a Reply