Horizontal gene transfer from Zygo to pea aphid

Pea AphidAnother result from the analysis of the recently published genome of the pea aphid, Acyrthosiphon pisum. Nancy Moran and Tyler Jarvik present a study of the origin of the carotenoid production gene in pea aphid. Animals typically cannot make carotenoids so they sought to discover how this is possible. They find that it is derived from a horizontal gene transfer event of a fungal gene into the aphid lineage. This gene is responsible for the red-green color polymorphism in the aphid. It appears the gene is derived from a ‘zygomycete’ or relative in the early branching lineage of the fungi. One gene, a carotenoid desaturase, is encoded in a 30kb genomic region that is missing in green aphids but present in the red morphs. The region is apparently maintained in the population by frequency dependent selection since each color has an advantage or disadvantage for evading detection by predators in different environments.

The reports of eukaryotic HGT event from fungi to animals is quite rare so this finding is surprising in that sense, but the authors argue that the important ecological role of carotenoids suggest we might see even more examples if we look harder.

Moran, N., & Jarvik, T. (2010). Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids Science, 328 (5978), 624-627 DOI: 10.1126/science.1187113

FGSC – a key partner in fungal biology research

FGSC logoAn article about the Fungal Genetics Stock Center written by the curators provides some insight into the 50 year history of this resource. It is a great summary of how the stock center has grown over the years and demonstrates how it is an essential aspect of how research on filamentous fungi is possible. The FGSC staff also provide important infrastructure in organization of meetings like the Neurospora and Fungal Genetics meetings and are also active pursuing their own research.  So don’t forget to cite FGSC in  your talks and (very importantly) papers.

McCluskey K, Wiest A, & Plamann M (2010). The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. Journal of Biosciences, 35 (1), 119-26 PMID: 20413916

Still time to register for MSA

Abstract deadline and early registration deadlines have been extended for MSA meeting which will be held June 28 – July 1 in Lexington, KY.

MSA/ISFEG MEETING
JUNE 28-JULY 1
EARLY REGISTRATION DEADLINE HAS BEEN EXTENDED TO APRIL 30

Have YOU registered for the joint meeting of the Mycological Society of America and the International Symposium on Fungal Endophytes of Grasses yet? If not, don’t despair, you still have a chance to see and be seen by everyone who is anyone in the mycological /endophyte world: join us in Lexington at the Hilton Hotel and Convention Center, June 28-July 1. The meeting price is a real deal, the registration fee INCLUDES your tickets for the opening social (with real, live bluegrass fiddlers) and the closing banquet at the Kentucky Horse Park, featuring the infamous MSA auction, and the side-splitting antics of the Moron Brothers musical and comedy duo. Be sure not to leave until July 2, so you won’t miss all the fun! Come on down, what are you waiting for, register now!!! Register, book hotel rooms (even find roommates and carpool buddies), and submit your abstracts at our meeting website, http://www.ca.uky.edu/msaisfeg/

Program Chair: Tom Horton

Local Arrangements Committee: Lisa Vaillancourt and Chris Schardl

Methylation to the max!

A new paper from the Zilberman lab at UC Berkeley shows the application of high throughput sequencing to the study of DNA methylation in eukaryotes.  They generate an huge data set of whole genome methylation patterns in several plants, animals, and five fungi including early diverging Zygomycete.

The work was performed using Bisulfite sequencing (Illumina) to capture methylated DNA, RNA-Seq of mRNA. The also performed some ChIP-Seq of H2A.Z on pufferfish to look at the nucleosome positioning in that species. For aligning the reads, they used BowTie to align the bisulfite sequences (though I’d be curious how a new aligner, BRAT, designed for Bisulfite seq reads would perform) to the genome.  They also sequenced mRNA via RNA-Seq to assay gene expression for some of the species.

They find several interesting patterns in animal and fungal genomes.  I’ll highlight one in the fungi. They find an unexpected pattern in U. reesii of reduced CGs in repeats, which shows signatures of a RIP-like process, are also methylated.  This finding is also consistent with observations in Coccidioides (Sharpton et al, Genome Res 2009) that showed depleted CGs pairs in repeats.  Since the phenomenon is also found in Coccidioides genomes this methylation of some repeats is likely not unique to U. reesii but may be important in recent evolution of the Onygenales fungi or the larger Eurotiales fungi.  There are several other interesting findings with the first such study that shows methylation data for Zygomycete fungi and a basidiomycete close to my heart, Coprinopsis.  It will be interesting is to dig deeper into this data and see how the patterns of methylation compare to other genomic features and the mechanisms regulating methylation process.

Zemach, A., McDaniel, I., Silva, P., & Zilberman, D. (2010). Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation Science DOI: 10.1126/science.1186366

I’ll have the truffles and huitlacoche

Black TruffleA couple of papers should have captured your attention lately in the realm of fungal genomics.

One is the publication of the genome of the black truffle Tuber melanosporum. This appears as an advanced publication at Nature (OA by virtue of Nature’s agreement on genome papers) along with a NYT writeup and is a tasty exploration of the genome of an ascomycete ectomycorrhizal (ECM) fungus. There are several gems in there including the differences in transposable element content, content of gene families related to carbohydrate metabolism. This genome helps open the doorway for exploring the several independent origins of ECM in both ascomycete and basidiomycete fungi.

I’ll also point out there is some work on the analysis of mating type locus found in this genome has applied aspects suggesting that inoculation of roots with both mating types may increase truffle yields in truffle farms. Evidence for sexual reproduction is also discovered from this genome analysis based on the sexual cycle genes present and the structure of the MAT locus.  Much like what was revealed in the genome analysis of the previously ‘asexual’ species Aspergillus fumigatus (and later reconstitution of a sexual cycle), the Tuber genome has the potential for mating and is a heterothallic (outcrossing) fungus based on its mating type locus -just like many other filamentous Ascomycete species.

A second paper I encourage you take a look at (those with a Science subscription) is from Virginia Walbot’s lab on the formation of tumors by U. maydis in Maize. These tumors end up destroying the corn but can produce a delicious (to some) dish that is huitlacooche. The idea that the fungus is co-opting the host system by secreting proteins that acted in the same way as native proteins and that it has a tissue or organ specific repertoire was one that her lab has been pursuing. U. maydis can grow inside corn without detection and  the formation of tumors seems to be a manipulation of the plant as much as it is the pathogen directly taking resources from the plant.  It reminds me a bit of the production of secondary metabolites that can control plant growth like gibberellins produced by fungi.  This kind of manipulation and also ability to evade detection suggests a pretty specific set of controls that prevent the fungus from doing the wrong thing at the wrong time (to avoid detection). So they set out to see if there are a set of organ specific genes that the fungus uses during infection that would suggest a very host-specific strategy by this corn smut.

In this paper the authors evaluate the role of fungal genes specifically expressed in infection of different organs and also the role of secreted proteins in colonization of the organs.  In what is impressive and elegant work, the authors show through the use of microarrays and genetics that there is plant tissue specific gene expression of U. maydis – so infections in leaves express a different set of genes than those in seedlings.  Genetic and phenotypic evaluation of fungal strains with knockouts of sets of the predicted secreted proteins was able to confirm a role for specific secreted proteins that previously may have not had any discernible phenotype. They infect strains with knockouts of sets of genes that encode secreted proteins and compare the virulence when these strains infect individual organs of the maize host.  They showed there is significantly different virulence in the various tissues for a some of the mutants suggesting an organ-specific role for virulence of secreted proteins. They also go on to show that some of this organ specific infection requires organ-specific gene expression by evaluating maize mutants and the ability of the fungus to infect different organs.

Future work will hopefully followup to see what these secreted proteins are manipulating in the host and how they either enable virulence by protecting the pathogen, avoiding detection by turning of host responses, or co-opting host gene networks in some other way.

Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, & Wincker P (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature PMID: 20348908

Skibbe DS, Doehlemann G, Fernandes J, & Walbot V (2010). Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science (New York, N.Y.), 328 (5974), 89-92 PMID: 20360107