Postdoctoral Position in Bioinformatics – University of Ottawa

The Corradi Lab is currently seeking a postdoctoral fellow in Bioinformatics to work on projects related to Comparative and Population Genomics. The research will be led by Dr. Nicolas Corradi and carried out in a CIFAR (Canadian Institute for Advanced Research) – affiliated laboratory located in the Department of Biology of the University of Ottawa, Canada.


The position is initially funded for one year, with the possibility of renewal for up to three years, depending on performance. The candidate is expected to work on two ongoing lab projects:

  1. Populations genomics of global samples of the bee-pathogen Nosema ceranae

    The recent decline in global populations of honey-bees has been attributed to a many factors, including infections from the microsporidian pathogen Nosema ceranae. Despite the potential threat that this parasite may have on global bee populations, the basic biology of this species is not well understood.
    The present project aims to increase our knowledge of the N. ceranae’s biology by exploring the extent, nature and function of genome diversity that exist both within and between dozens of parasite samples isolated globally (i.e. Spain, France, Turkey, Thailand, USA..etc…).
  2. Population genomics of global isolates of the model plant symbiont, Rhizophagus irregularis

    The Arbuscular Mycorrhizal Fungi (AMF) are ubiquitous plant symbionts that improve the ability of roots to uptake nutrients from soil and provide protection against plant pathogens. These organisms are intriguing as they harbor many nuclei within one cytoplasm throughout their entire life cycle. The genetic organization of these nuclei has been debated for years, but recent genome analyses in our lab are providing essential insights to this debate.

    The proposed projects aims to increase our knowledge of biology and evolution of these curious fungi and critical symbionts by investigating the genome diversity within and across different strains of the model AMF R. irregularis sampled globally.

For specific enquiries please contactDr. Nicolas Corradi (

Applicants are expected to have a strong background in either comparative genomics or populations genomics. Experience in either population genetics, environmental genomics, metagenomics, or ab-initio gene annotation and programming will be seen as an asset for the final selection of the candidate. Some basic training in bioinformatics (Perl, Python, or R) is desired.

A complete application package includes a CV, a one-page description of past research accomplishments and future goals, and the names and e-mail addresses of at least 2 references. The position opens immediately, and evaluation of applications will continue until a suitable candidate is found.

The University of Ottawa is a large, research-intensive university, hosting over 40,000 students and located in the downtown core area of Canada’s capital city. Ottawa is a vibrant, multicultural city with a very high quality of life.

Applications can be sent to Dr. Nicolas Corradi (

Representative publications:

  • Pelin A., Selman M., Laurent Farinelli, Aris-Brosou S. and N. Corradi. 2015. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology
  • Ropars J. and N. Corradi. 2015. Heterokaryotic vs Homokaryotic Mycelium in the Arbuscular Mycorrhizal Fungi: Different Techniques, Different Results? New Phytologist
  • Corradi, N. 2015. Microsporidians: Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfer. Annual Review of Microbiology
  • Riley R., Charron P., Idnurm A., Farinelli F., Yolande D. , Martin F. and N. Corradi. 2014. Extreme diversification of the mating type–high?mobility group (MATA?HMG) gene family in a plant?associated arbuscular mycorrhizal fungus. New Phytologist
  • Tisserant E., Malbreil M. et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS

Postdoc: Oslo Fungal molecular ecology

Three year position as Postdoctoral Research Fellow in fungal molecular ecology available at the University of Oslo, Norway:

Soil fungi play important functional roles in forest ecosystems; while saprotrophic taxa are essential for organic matter decomposition; mycorrhizal root-associated fungi mediate the link between living plants and the below-ground community. Recent studies indicate that plant-fungi interactions through mycorrhiza affect the efficiency of decomposition by fungi, and works as a main driver for soil carbon sequestration in forest ecosystems. The goal of this project (MycoSoil), which is funded by the Norwegian Research Council, is to make fundamental progress in the understanding of the community ecology and functions of fungi in boreal forest soils, how they are organized spatiotemporally and how they influence on carbon sequestration processes. We will take advantage of linking the project to two long-term surveys of boreal forests. State-of-the art DNA metabarcoding and metatranscriptomics approaches will be used to analyze spatiotemporal variation in the soil fungal communities.

For more information see or contact Håvard Kauserud at

Postdoc: Comparative genomics and bioinformatics

Postdoc position in comparative genomics and bioinformatics

Applications are invited for a bioinformatics postdoctoral position in ?the research group of Laszlo G Nagy (Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary). We are now looking to hire new people with a background in bioinformatics, phylogenetics or fungal evolution. The Lab offers excellent training opportunities in fungal comparative genomics, cutting edge projects, abundant funding, an inspiring atmosphere and extensive collaborator network.

The primary focus of the lab is understanding the general principles of convergent evolution and fungal multicellularity through comparative genomics, transcriptomics and single-cell transcriptomics of multicellular fruiting bodies in Basidiomycetes. Fruiting bodies represent some of the most complex morphological structures found in fungi, yet, their developmental and evolutionary origins are hardly known. Complex fruiting bodies have evolved independently several times in the Basidiomycetes, offering an excellent model system to study the genetic mechanisms of convergent evolution.

The successful Candidate has:

  • PhD in bioinformatics, evolutionary biology, mycology or other relevant field
  • Experience in genomics, Perl and/or Python scripting
  • Good team player traits
  • Experience in working with fungi is a plus

Contact and application – The starting date of the project is September 2015. The position will last for one year with the possibility of extension up to 4 years. If interested, send a motivation letter along with your CV to Laszlo Nagy (

Dr. Laszlo Nagy
Fungal Evolution & Genomics Lab
Synthetic and Systems Biology Unit, Institute of Biochemistry
Biological Research Center, HAS