Category Archives: evolution

Evolution of aflatoxin gene cluster

Blogging on Peer-Reviewed ResearchIgnazio Carbone and colleagues published a recent analysis of the evolution of the aflatoxin gene cluster in five Aspergillus fungi entitled “Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster” in BMC Evolutionary Biology. The authors were able to identify seven modules pairs of genes whose history of duplication were highly correlated. Several genomes of Aspergillus have been sequenced along with more Eurotioales fungi. Continue reading Evolution of aflatoxin gene cluster

ISMB/ECCB 2007 recap

ISMB2007Back from ISMB/ECCB and a mountain of things left undone that somehow still need doing … including a quick entry about what was interesting at the conference.

I heard many good talks and only a few bad ones – maybe I guessed properly in darting between the multiple sessions. The meeting itsself was much better than past ones I had attended. The combination of Special Interest Groups meeting (BOSC, AFP, and Microbial Comparative Genomics being the ones I spent my time in). I got to give my talks and tutorial during the first few days and was able to just try and soak up the rest of the meeting (when my brain wasn’t melting from the heat). Particularly good was Carole Goble’s presentation on 7-deadly sins of bioinformatics software development.

Some general evolutionary talks that I found really interesting (some of these are probably biased since I count many of the presenters as friends):

I’ll write a quick post on the BoF session on open source and data sharing as well.

Todd and I took some pictures as well.

Evolution of PEX genes

A nice evolutionary analysis of peroxin genes entitled PEX Genes in Fungal Genomes: Common, Rare, or Redundant in the journal “Traffic” from Kiel et al out of the University of Groningen in The Netherlands. Within a species, the genes in the PEX family are not necessarily phylogenetically related to each other, but instead are all named as to how they were discovered in mutant screens, most of which were done in S. cerevisiae.

Peroxisomes are interesting because they are necessary for some biochemical reactions (fatty acid metabolism). In filamentous fungi there are additionally specialized peroxisomes called Woronin bodies that plug the septal pore that separates individuals cells in a hyphae. These are specific to filamentous fungi so it is interesting to contrast the numbers and types of genes in the PEX family that are present as determined from the genome sequences. To relate this to human biology, the authors suggest that understanding the complex phenotypes of human peroxisome biogenesis disorders (PBD) will be helped through the study of the disruptions of PEX genes in various filamentous fungi. Interestingly, they find that nearly all PEX genes are present in all fungi, yeast and filamentous alike, although there may be additional genes unidentified.

Woronin bodies
Woronin bodies in A. nidulans from Momany et al, Mycologia 2002

Continue reading Evolution of PEX genes

Multiple Losses of sex within Microsporidia

Blogging about Peer-Reviewed ResearchA recent paper I found interesting (and I am sure was interesting to Dr Logsdon) about Multiple losses of sex within a single genus of Microsporidia. In the paper Joseph Ironside describes multiple instances of loss of sex within the Nosema/Vairimorpha group testing the hypothesis that the ancestral lineage was asexual. The group of species are undergoing rapid evolution where changes in lifestyle/lifecycle can occur even among very closely related lineages. In order to do test a formal hypothesis about whether the ancestor was asexual or sexual this the author had to improve the resolution of the phylogenetic relationships of these species and deal with some technical problems due to mutational biases in the rDNA sequences. The result he found was that the ancestral lineage was sexual and that asexuality arose multiple times among these species. He also provides a caution:

“The rapid evolution of microsporidian life cycles indicated by this study also suggests that even closely related microsporidia cannot be assumed to have similar life cycles and the life cycle of each newly discovered species must therefore be completely described.”

Something one has to be careful about in comparative studies of these species.

Continue reading Multiple Losses of sex within Microsporidia

Would a Beetle by another name smell as sweet?

I read this blurb in the New Scientist about a PNAS paper (subscription required for next 6 months) on how hive beetles (Aethina tumida) are able to infest bee hives by throwing off the bees because they are producing isopentyl acetate which is thought to be produced and used by bees to signal an alarm. So the increased levels of the pheromone disorients the bees allowing beetles to continue infecting. European bees appear to be susceptible to this attack while the African bees have apparently evolved to better handle the beetle infestation. I’m not clear if the African bees have a different behavior or if they have different biochemical pathways/receptors to not be fooled by the cheap perfume of the invaders.

Beetles + isopentyl acetate = Unstoppable!

The fungus part here is that the beetles are carrying a hemiascomycete yeast, Kodamaea ohmeri in the Saccharomyces clade (see Suh and Blackwell 2005 for more details), which produces the isopentyl acetate pheromone. So it is a sort of auto-immune hive reaction where the defense mechanism is being short-circuited and harming the host.

Continue reading Would a Beetle by another name smell as sweet?

Fungus could cause a food shortage

A while back, Jason blogged briefly on a New Scientists article about the rise of a new Puccinia graminis strain, Ug99, that is spreading through West African wheat fields at an enormous rates. It looks like this story is growing in the scientific conciousness, as Science is now running an article on the spread of this wheat pandemic.

The article has a nice bit of background regarding the rise of the disease. It seems that it is spreading so quickly for due to its relatively broad host range compared to other strains. While scientists have been working to derive resistant wheat varieties, Puccinia has successfully foiled their recent attempts by mutating to acheive resistance to the plant expressed Sr24.

To boot, this strain has been found in Yemen, allowing its spores to hitch a ride along the winds that blow north along the Indian Ocean, putting much of the global bread basket at risk (I imagine that the last thing the middle east needs right now is a wheat shortage). The last time a rust spread through this area, it caused 1 billion dollars in damage. Given the extensive host range of this variety, experts predict that damages will exceede at least three times this amount.

The spread of the rust pandemic

Fortunately, researchers in Ethiopian have derived two wheat strains that may be resistant to Ug99. However, it can take several years to get these wheat strains in the ground and, ultimately, no one is certain that Ug99 won’t cleverly find a way to adapt resistance. We should keep our ears to the rail on this one: it could be a big problem.

Proteins Evolve Differentially in Saccharomyces

Blogging about Peer-Reviewed ResearchPerhaps not a surprise to anyone that has dabbled in evolutionary analysis of proteins, Kawahara and Imanishi (BMC Evolutionary Biology 2007) confirm that not every protein evolves via a molecular clock in Saccharomyces sensu scricto. Using everyone’s favorite evolutionary tool, PAML, the authors identify protein lineages via a whole genome scan that evolve relatively slow or fast compared to the rest of the clade. Some changes even appear to be due to the invisible hand of natural selection and independent of the complications that may have arisen during the whole genome duplication in the ancestor of this clade.

It has been previously speculated that, either upon protein duplication or change in the selective regime of the environment, a protein may rapidly evolve at speciation and then, upon obtaining a new, important function, slow down it’s evolutionary rate to a clock-like tempo. One of the black boxes in this hypothesis is whether or not closely related proteins can rapidly diverge. While the authors are not able to identify a mechanism explaining how, their study demonstrates the plausibility of this hypothesis. However, it remains uncertain if proteins that exhibit rapid divergence will subsequently slow down their evolutionary rate later in time.

It’s good to see evolutionary analysis being applied to fungal genomes. With so many sequenced species spanning a great range of phylogenetic distance, the fungal kingdom is poised to provide great insight into the evolution of eukaryotes.

Fungal Genetics 2007 details

I’m including a recapping as many of the talks as I remember. There were 6 concurrent sessions each afternoon so you have to miss a lot of talks. The conference was bursting at the seams as it was- at least 140 people had to be turned away beyond the 750 who attended.

If there was any theme in the conference it was “Hey we are all using these genome sequences we’ve been talking about getting”. I only found the overview talks that solely describe the genome solely a little dry as compared to those more focused on particular questions. I guess my genome palate is becoming refined.

Continue reading Fungal Genetics 2007 details

Hello, do I know you?

Blogging about Peer-Reviewed ResearchSelf and non-self recognition is important for fungi when hyphae interact fuse if they should compartmentalize and undergo apoptosis to kill the heterokaryoton or exchange nutrients. This process is part of cell defense and to limit to the movement of mycoviruses.

A paper in PLOS ONE describes the Genesis of Fungal Non-Self Repertoire. This kind of work goes on down the hall from us as well in the Glass lab among others. This recent paper describes het genes, which contain WD40 repeats and different combinations of these help control specificity. There is of course a diverse literature on this subject especially in Neurospora, and I’m not reviewing it here, but it is an imporant process in understanding how fungi interact with their environment.

Genome resources for Candida species

The Candida clade of Hemiascomycete fungi have received much attention from funding bodies so that many genomic and experimental resources are available address questions of pathogenecity and industrial applications of these species.

The Candida genus

Traditionally, species of yeasts that were thought to be asexual were given the genus name Candida. This has lead to Candida being a sort of taxonomic rubbish bin as this system of classification breaks down when asexuality arises more than once (creating homoplasy). For example, the asexual Candida glabrata is found within the Saccharomyces clade when molecular phylogenetics is applied. The problem lies in that many of these species appear very similar visually and microscopically and so there had not been enough phylogenetically informative phenotypic characters to easily classify them further. With the use of molecular phylogenetics the classifications have been improved as shown in several studies, however we retain the historical nature of the genus and species names for these organisms for the time being even though the phylogenetic diversity of species in the “genus” is much broader than other genus-level classifications. It will be interesting to see whether taxonomic proposals like PhyloCode or traditional revisions of the species names will provide new names for the group.

The Candida Genome Database (CGD) sister to the Saccharomyces Genome Database (SGD) provides resources for phenotype and sequences related to human commensal and dimorphic fungus Candida albicans. A recent paper by Arnaud et al describes the resources that are available through their website. An essentially completed C. albicans diploid genome with curated gene models and annotations provides an essential resource for this model pathogenic system. In addition to the SC5314 strain of C. albicans the white-opaque (WO) strain can switch between different colony morphologies – white and smooth or gray and rod shaped.

6 additional species have had their genomes in the Candida clade have had their genomes sequenced including Pichia stipis, Debaryomyces hansenii, Candida lusitaniae, Candida tropicalis, Candida guilliermondii, and Lodderomyces elongisporus. These resources will hopefully shed some light on the importance and mechanisms for dimorphic switching in the pathogen C. albicans, the importance and evolution of alternative codon usage in the clade, and better usage of the industrial yeasts like P. stipitis and D. hansenii.