Category Archives: filamentous

A mushroom on the cover

I’ll indulge a bit here to happily to point to the cover of this week’s PNAS with an image of Coprinopsis cinerea mushrooms fruiting referring to our article on the genome sequence of this important model fungus.  You should also enjoy the commentary article from John Taylor and Chris Ellison that provides a summary of some of the high points in the paper.

Coprinopsis cover

Stajich, J., Wilke, S., Ahren, D., Au, C., Birren, B., Borodovsky, M., Burns, C., Canback, B., Casselton, L., Cheng, C., Deng, J., Dietrich, F., Fargo, D., Farman, M., Gathman, A., Goldberg, J., Guigo, R., Hoegger, P., Hooker, J., Huggins, A., James, T., Kamada, T., Kilaru, S., Kodira, C., Kues, U., Kupfer, D., Kwan, H., Lomsadze, A., Li, W., Lilly, W., Ma, L., Mackey, A., Manning, G., Martin, F., Muraguchi, H., Natvig, D., Palmerini, H., Ramesh, M., Rehmeyer, C., Roe, B., Shenoy, N., Stanke, M., Ter-Hovhannisyan, V., Tunlid, A., Velagapudi, R., Vision, T., Zeng, Q., Zolan, M., & Pukkila, P. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) Proceedings of the National Academy of Sciences, 107 (26), 11889-11894 DOI: 10.1073/pnas.1003391107

A cacophony of comparative genomics papers

A nice series of comparative genomics articles have been published in the last few weeks. The pace of genome sequencing has accelerated to the point that we have lots of sequencing projects coming from individual labs and small consortia not necessarily from genome centers. We are seeing a preview of what next (2nd) generation sequencing will enable and can start to imagine what happens when even cheaper 3rd generation sequencing technologies are applied. I’m behind in reviewing these papers for you, dear reader, but I hope you’ll click through and take a look at some of these papers if you are interested in the topics.

In the following set of papers we have some nice examples of comparative genomics of closely related species and among a clade of species. The papers mentioned below include our work on the human pathogens Coccidioides and Histoplasma (Sharpton et al) studied at several evolutionary distances, a study on Saccharomycetaceae (Souciet et al) clade of yeast species, and a comparison of two species of Candida (Jackson et al): the commensal and opportunistic fungal pathogen Candida albicans with a very closely related species Candida dubliensis.  There is also a nice comparison of strains of Saccharomyces cerevisiae looking at effects of domestication and examples of horizontal transfer.

There is also a report of de novo sequencing of a filamentous fungus using several approaches, traditional Sanger sequencing, 454, and Illumina/Solexa (DiGuistini et al).

Finally, a paper from a few months ago (Ma et al), gives a fantastic look at one of the early branches in the fungal tree – the Mucorales (formerly Zygomycota) – via the genome of Rhizopus oryzae.  This paper is a really excellent example of what we can learn about a group of species by contrasting genomic features in the early branches in the tree with the more well studied Ascomycete and Basidiomycete fungi.  More genome sequences will help us build on these findings and clarify if some of the observations are unique to the lineage or universal aspects of the earliest fungi.

I hope you enjoy!

Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J., Wincker, P., Casaregola, S., & Dequin, S. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118 Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0904673106 (via J Heitman)

Jackson, A., Gamble, J., Yeomans, T., Moran, G., Saunders, D., Harris, D., Aslett, M., Barrell, J., Butler, G., Citiulo, F., Coleman, D., de Groot, P., Goodwin, T., Quail, M., McQuillan, J., Munro, C., Pain, A., Poulter, R., Rajandream, M., Renauld, H., Spiering, M., Tivey, A., Gow, N., Barrell, B., Sullivan, D., & Berriman, M. (2009). Comparative genomics of the fungal pathogens Candida dubliniensis and C. albicans Genome Research DOI: 10.1101/gr.097501.109

DiGuistini, S., Liao, N., Platt, D., Robertson, G., Seidel, M., Chan, S., Docking, T., Birol, I., Holt, R., Hirst, M., Mardis, E., Marra, M., Hamelin, R., Bohlmann, J., Breuil, C., & Jones, S. (2009). De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 10 (9) DOI: 10.1186/gb-2009-10-9-r94 (open access)

Sharpton, T., Stajich, J., Rounsley, S., Gardner, M., Wortman, J., Jordar, V., Maiti, R., Kodira, C., Neafsey, D., Zeng, Q., Hung, C., McMahan, C., Muszewska, A., Grynberg, M., Mandel, M., Kellner, E., Barker, B., Galgiani, J., Orbach, M., Kirkland, T., Cole, G., Henn, M., Birren, B., & Taylor, J. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives Genome Research DOI: 10.1101/gr.087551.108 (open access)

Souciet, J., Dujon, B., Gaillardin, C., Johnston, M., Baret, P., Cliften, P., Sherman, D., Weissenbach, J., Westhof, E., Wincker, P., Jubin, C., Poulain, J., Barbe, V., Segurens, B., Artiguenave, F., Anthouard, V., Vacherie, B., Val, M., Fulton, R., Minx, P., Wilson, R., Durrens, P., Jean, G., Marck, C., Martin, T., Nikolski, M., Rolland, T., Seret, M., Casaregola, S., Despons, L., Fairhead, C., Fischer, G., Lafontaine, I., Leh, V., Lemaire, M., de Montigny, J., Neuveglise, C., Thierry, A., Blanc-Lenfle, I., Bleykasten, C., Diffels, J., Fritsch, E., Frangeul, L., Goeffon, A., Jauniaux, N., Kachouri-Lafond, R., Payen, C., Potier, S., Pribylova, L., Ozanne, C., Richard, G., Sacerdot, C., Straub, M., & Talla, E. (2009). Comparative genomics of protoploid Saccharomycetaceae Genome Research DOI: 10.1101/gr.091546.109 (open access)

Ma, L., Ibrahim, A., Skory, C., Grabherr, M., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B., Sone, T., Abe, A., Calvo, S., Corrochano, L., Engels, R., Fu, J., Hansberg, W., Kim, J., Kodira, C., Koehrsen, M., Liu, B., Miranda-Saavedra, D., O’Leary, S., Ortiz-Castellanos, L., Poulter, R., Rodriguez-Romero, J., Ruiz-Herrera, J., Shen, Y., Zeng, Q., Galagan, J., Birren, B., Cuomo, C., & Wickes, B. (2009). Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication PLoS Genetics, 5 (7) DOI: 10.1371/journal.pgen.1000549 (open access)

Trichoderma reesei genome paper published

TrichodermaThe Trichoderma reesei genome paper was recently published in Nature Biotechnology from Diego Martinez at LANL with collaborators at JGI, LBNL, and others. This fungus was chosen for sequencing because it was found on canvas tents eating the cotton material suggesting it may be a good candidate for degrading cellulose plant material as part of cellulosic ethanol or other biofuels production.  The fungus also has starring roles in industrial processes like making stonewashed jeans due to its prodigious cellulase production.

The most surprising findings from the paper include the fact that there are so few members of some of the enzyme families even though this fungus is able to generate enzymes with so much cellulase activity. The authors found that there is not a significantly larger number of glucoside hydrolases which is a collection of carbohydrate degrading enzymes great for making simple sugars out of complex ones. In fact, several plant pathogens compared (Fusarium graminearum and Magnaporthe grisea) and the sake fermenting Aspergillus oryzae all have more members of this family than does.  T. reesei has almost the least (36) copies of a cellulose binding domain (CBM) of any of the filamentous ascomycete fungi.  They used the CAZyme database (carbohydrate active enzymes) database which has done a fantastic job building up profiles of different enzymes involved in carhohydrate degradation binding, and modifications.

Whether T. reesei is really the best cellulose degrading fungus is definitely an open question.  That it works well in the industrial culture that it has been utilized in is important, but there may be other species of fungi with improved cellulase activity and who may in fact have many more copies of cellulases.  So it will be good to add other fungi to the mix with quantitative information about degradation to try and glean what are the most important combination of enzymes and activities.

One technical note.  The comparison of copy number differences employed in the paper is a simple enough Chi-Squared, work that I’ve done with Matt Hahn and others include a gene family size comparison approach that also taked into account phylogenetic distances and assumes a birth-death process of gene family size change.  It would be great to apply the copy number differences through this or other approaches that just evaluate gene trees for these domains to see where the differences are significant and if they can be polarized to a particular branch of the tree.

So will this genome sequence lead to cheaper, better biofuel production? Certainly it provides an important toolkit to start systematically testing individual cellulase enzymes. It’s hard to say how fast this will make an impact, but the work of JBEI and a host of other research groups and biotech companies are going to be able to systematically test out the utility of these individual enzymes.

There is also evolutionary work by other groups on the evolution of these Hypocreales fungi trying to better define when biotrophic and heterotrophic transitions occurred to sample fungi with different lifestyles that might have different cellulase enyzmes that may not have been observed. Defining the relationships of these fungi and when and how many times transitions to lifestyles occurred to choose the most diverse fungi may be an important part of discovering novel enzymes.

Also see

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology DOI: 10.1038/nbt1403

Fusarium graminearum genome published

The genome of the wheat and cereal pathogen Fusarium graminearum was published in Science this week in an article entitled “The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specializationtion”. The project was a collaboration of many different Fusarium research groups. The genome sequencing was spearheaded by the Broad Institute at Harvard and MIT and is part of a larger project to sequence several different species of Fusarium. The group sequenced a second strain in order to identify polymorphisms.

Some of the key findings

  • The presence of Repeat Induced point-mutation (RIP) has likely limited the amount of repetitive and duplicated sequences in the genome
  • Most of the genes unique to F. graminearum (and thus not present in 4 other Fusarium spp genomes) are found in the telomeres
  • Between the sequenced strains SNP density ranged from 0 to 17.5 polymorphisms per kb.
  • Some of the genes expressed uniquely during plant infection (408 total) include known virulence factors and many plant cell-wall degrading enzymes.
  • The genes showing some of the highest SNP diversity tended to be unique to Fusarium and often unique to F. graminearum

Evolution of PEX genes

A nice evolutionary analysis of peroxin genes entitled PEX Genes in Fungal Genomes: Common, Rare, or Redundant in the journal “Traffic” from Kiel et al out of the University of Groningen in The Netherlands. Within a species, the genes in the PEX family are not necessarily phylogenetically related to each other, but instead are all named as to how they were discovered in mutant screens, most of which were done in S. cerevisiae.

Peroxisomes are interesting because they are necessary for some biochemical reactions (fatty acid metabolism). In filamentous fungi there are additionally specialized peroxisomes called Woronin bodies that plug the septal pore that separates individuals cells in a hyphae. These are specific to filamentous fungi so it is interesting to contrast the numbers and types of genes in the PEX family that are present as determined from the genome sequences. To relate this to human biology, the authors suggest that understanding the complex phenotypes of human peroxisome biogenesis disorders (PBD) will be helped through the study of the disruptions of PEX genes in various filamentous fungi. Interestingly, they find that nearly all PEX genes are present in all fungi, yeast and filamentous alike, although there may be additional genes unidentified.

Woronin bodies
Woronin bodies in A. nidulans from Momany et al, Mycologia 2002

Continue reading

More Euriotiomycete genomes

P.marneffeiThe genome sampling in the Eurotiomycota clade just keeps getting better. The new J. Crag Venter Institute (TIGR) deposited WGS Assemblies of the human pathogens Penicillium marneffei and Talaromyces stipitatus. P. marneffei is a thermally dimorphic fungus endemic to South-East Asia found in bamboo rats. It is studied by a number of labs and the genome will aid in many of the studies including the population structure through MLST studies.

Clusters of genomes

As announced at the Fungal Genetics meeting, the FGI at the Broad Institute is focusing on clusters of genomes rather than single ones. Some of genome projects are already grouped.

  • Coccidioides has 3 strains already plus the outgroup Uncinocarpus and conceivable one could include Histoplasma in there. This resources will grow to 14 strains (which comprise two species) of Coccidioides contributed by FGI and one from TIGR.
  • Aspergillus currently has 8 species sequenced with several in pipeline at Broad and TIGR.
  • Fusarium group has 3 species including recently released F. oxysporium.
  • The Candida clade also have several different already sequenced genomes and of course there is the already well studied (and well utilized genome resources I’ll add) for the Saccharomyces clade.
  • There are 4 genomes (well 5 but JEC21 and B-3501 are nearly identical) of Cryptococcus.

All in all a very exciting time for comparative genomics and I’m particularly intrigued to see how people will begin to use the resources.

This work to consolidate the clusters of genomes will, I hope, be very powerful. However, I still feel we are not doing a good job translating and centralizing information from different related species into a more centralized resource. Lots of money is spent on sequencing but I don’t know that we have realized the dream of having the comparative techniques illuminate the new genomes to the point that we are learning huge new things.

It seems to me, initially there is the lure of gathering low-hanging fruit from a genome analysis (which drives the first genome(s) paper), but not always the financial support of the longer term needs of the community to feed the experimental and functional work back into the genome annotation and interpretation.  The cycle works really well for Saccharomyces cerevisiae because the curators who work with the community to insure information is deposited and that literature is gleaned to link genomic and functional information. But this is expensive in terms of funding many curators for many different projects.

It seems as we add more genomes there isn’t a very centralized effort for this type of curatorial information and so we lack the gems of high-quality annotation that is only seen in a few “model” systems.  At some point a better meta-database that builds bridges between resource and literature rich “model system” communities may help, but maybe something new will have to be created? I like thinking about this as a user-driven content via a wiki which also dynamic (and versioned!) content from automated intelligent systems to map the straight-forward things.  Tools like SCI-PHY already exist that can do this and generate robust orthology groups (or Books as the PhyloFact database organizes them) for futher analysis. The SGD wiki for yeast is a start at this, but is mostly an import of SGD data into a mediawiki framework – I wonder how this can be built upon in a more explictly comparative environment.

Fungal Genetics 2007 details

I’m including a recapping as many of the talks as I remember. There were 6 concurrent sessions each afternoon so you have to miss a lot of talks. The conference was bursting at the seams as it was- at least 140 people had to be turned away beyond the 750 who attended.

If there was any theme in the conference it was “Hey we are all using these genome sequences we’ve been talking about getting”. I only found the overview talks that solely describe the genome solely a little dry as compared to those more focused on particular questions. I guess my genome palate is becoming refined.

Continue reading

Hello, do I know you?

Blogging about Peer-Reviewed ResearchSelf and non-self recognition is important for fungi when hyphae interact fuse if they should compartmentalize and undergo apoptosis to kill the heterokaryoton or exchange nutrients. This process is part of cell defense and to limit to the movement of mycoviruses.

A paper in PLOS ONE describes the Genesis of Fungal Non-Self Repertoire. This kind of work goes on down the hall from us as well in the Glass lab among others. This recent paper describes het genes, which contain WD40 repeats and different combinations of these help control specificity. There is of course a diverse literature on this subject especially in Neurospora, and I’m not reviewing it here, but it is an imporant process in understanding how fungi interact with their environment.