Category Archives: zygomycete

Postdoc: UMichigan Fungal Genomics

The lab of Tim James in the Department of Ecology and Evolutionary Biology at the University of Michigan is looking to hire a postdoctoral fellow in the area of single cell and comparative genomics. The research is centered on understanding the phylogeny and molecular evolution of uncultured and poorly known fungi, including the Cryptomycetes, Zygomycetes, and Chytridiomycetes through genomic analyses. The ultimate goals of the project are to produce a well-resolved phylogeny of the basal branches of the fungal kingdom, to identify key evolutionary events associated with diversification and reproduction, and to use genomics to predict ecological roles of uncultured lineages. A major component of the work will be to develop or improve methods for sequencing fungal genomes and transcriptomes using single or few cells or genome assembly using metagenomic approaches. This work will involve collaborations with the ZyGOLife research network (zygolife.org) and the Joint Genome Institute (JGI). The projects are supported by NSF and two JGI Community Sequencing Projects.

The ideal candidate will be skilled in bioinformatics, molecular biology, and microbiology with an interest in fungi. Preference will be given to candidates with proficiency in both bioinformatics and molecular biology. Possible duties include environmental sampling, cell sorting (FACS, micromanipulation), microscopy, genome assembly and annotation, and comparative analyses of genome evolution. Opportunities for mentoring undergraduates or research associates will be provided. The initial appointment is for one year with a possibility of extension to a second year pending performance review.

Our lab (www.umich.edu/~mycology) pursues diverse projects in mycology, and the environment is conducive to development of a pathway to independence in academic research. The lab is in the Department of Ecology and Evolutionary Biology (http://www.eeb.lsa.umich.edu/eeb/index.html), which has strengths in phylogenetics, evolutionary genomics, and disease ecology.

Interested applicants should email Tim James (tyjames@umich.edu) with a CV, cover letter, and the names and contact information of three references.

Anticipated Start Date: Between Oct. 1, 2016 and Jan. 1, 2017.

The University of Michigan is a non-discriminatory/affirmative action employer. The Department of Ecology & Evolutionary Biology at the University of Michigan harbors multiple labs with a focus on evolutionary genetics (http://www.lsa.umich.edu/eeb).

Timothy Y. James
Associate Professor
Associate Curator of Fungi
Department of Ecology and Evolution
University of Michigan
Ann Arbor, MI 48109
734-615-7753
tyjames@umich.edu
http://www.umich.edu/~mycology/

Postdoc & PhD positions in Evolutionary Biology – Genome organization of AM fungi

Postdoc & PhD positions in Evolutionary Biology – Genome organization of AM fungi

At the Department of Evolutionary Biology, Uppsala University, Sweden.

Description

Arbuscular mycorrhizal (AM) fungi form symbiotic interactions with almost all terrestrial plants and have done so since plants first colonized land. The postdoc and PhD position are both part of a newly funded ERC research program aimed at understanding the ecology and evolution of these widespread and important organisms. Using state-of-the art technology, e.g., PacBio long read sequencing and single nucleus genomics methods, the research program seeks to resolve the genome organization of AM fungi so that the evolutionary consequences of their genome organization can be studied. Specifically, the project aims at testing the hypothesis that genetically distinct nuclear genotypes coexist within AM fungi. The project involves culturing of AM fungi, sorting and genotyping of nuclei from individual fungal isolates, genome and meta-genome sequencing and assembly, as well as genome size estimation. Based on the outcome of this first part, the project will be developed to connect genotype and phenotype to mycorrhizal activity.

The postdoc and PhD student will work close together and be part of an expanding research team led by Anna Rosling (http://www.ieg.uu.se/evolutionary-biology/rosling/research/) in collaboration with Hanna Johannesson (http://www.iob.uu.se/research/systematic-biology/johannesson/) at the Evolutionary Biology Centre (EBC), Uppsala University. EBC constitutes an exciting arena for multidisciplinary research in evolutionary biology in a broad sense, housing some 300 scientists and graduate students. The scientific environment with numerous seminars, journal clubs and social activities offer excellent possibilities for contacts and collaborations. Local platforms for high-performance computational analyses (https://www.uppmax.uu.se/uppnex), NGS, SNP genotyping and proteomic analyses (http://www.scilifelab.se) ensure immediate access to state-of-the-art technology. This project will utilize several of the technological platforms at SciLifeLab in Uppsala, in particular the Microbial Single Cell Genomics Platform (https://www.scilifelab.se/facilities/single-cell/).

Qualifications

Experience in bioinformatics and genome analysis is necessary and experience in mycology is a merit. The ideal candidate is scientifically motivated and can work both independently and as part of a team. High standard of spoken and written English is required.

To apply for the PhD position you must have a Master Degree in Bioinformatics, Evolutionary Biology, Microbiology, Mycology or equivalent. Attach a copy of your diploma and your master thesis with the application.

To apply for the Post Doc position you must have acquired a PhD in Bioinformatics, Evolutionary Biology, Microbiology, Mycology or equivalent. Attach a copy of your PhD degree with the application.

Information about the position will be given by Anna Rosling tel +46 18-471 64 44, Anna.Rosling@ebc.uu.se.

Application: The application should include a letter with a short motivation of your interest in the position (one A4 page) and name and contact information to at least three reference persons and your CV. Use the link below to access the application form.

PhD candidates are welcome to submit their application using the link below no later than February 29, 2016. http://www.uu.se/en/about-uu/join-us/details/?positionId=88336

Post Doc candidates are welcome to submit their application by email to Anna.Rosling@ebc.uu.se no later than February 15, 2016

Postdoc: Early diverging fungi in the James lab at U. Michigan

The James Lab at the University of Michigan is looking to hire a postdoctoral fellow in the area of single cell and comparative genomics. The research is centered on understanding the phylogeny, life cycles, and nutrition of early diverging fungi, including the Zygomycetes, Cryptomycetes, and Chytridiomycetes through genomic analyses. The ultimate goals of the project are to produce a well-resolved phylogeny of the basal branches of the fungal kingdom, to identify key evolutionary events associated with diversification and reproduction, and to use genomics to predict ecological roles of uncultured lineages. A major component of the work will be to develop or improve methods for sequencing genomes and transcriptomes using single or few cells or genome assembly using metagenomic approaches. This work will involve collaborations with the ZyGOLife research network (zygolife.org) and the Joint Genome Institute (JGI). The projects are supported by NSF and two JGI Community Sequencing Projects.

The ideal candidate will be skilled in bioinformatics, molecular biology, and cultivation/microscopy of fungi. Preference will be given to candidates with proficiency in both bioinformatics and molecular biology. Possible duties include environmental sampling, cell sorting (FACS, micromanipulation), microscopy, genome assembly and annotation, and comparative analyses of genome evolution. Opportunities for mentoring undergraduates or research associates will be provided. The initial appointment is for one year with a possibility of extension to a second year pending performance review.

Our lab (www.umich.edu/~mycology) pursues diverse projects in mycology, and the environment is conducive to development of a pathway to independence in academic research. The lab is in the Department of Ecology and Evolutionary Biology (http://www.eeb.lsa.umich.edu/eeb/index.html), which has strengths in phylogenetics, evolutionary genomics, and disease ecology.

Interested applicants should email Tim James (tyjames@umich.edu) with a CV, cover letter, and the names and contact information of three references.

Postdoctoral Position in Bioinformatics – University of Ottawa

The Corradi Lab is currently seeking a postdoctoral fellow in Bioinformatics to work on projects related to Comparative and Population Genomics. The research will be led by Dr. Nicolas Corradi and carried out in a CIFAR (Canadian Institute for Advanced Research) – affiliated laboratory located in the Department of Biology of the University of Ottawa, Canada.

Website: http://corradilab.weebly.com/

The position is initially funded for one year, with the possibility of renewal for up to three years, depending on performance. The candidate is expected to work on two ongoing lab projects:

  1. Populations genomics of global samples of the bee-pathogen Nosema ceranae

    The recent decline in global populations of honey-bees has been attributed to a many factors, including infections from the microsporidian pathogen Nosema ceranae. Despite the potential threat that this parasite may have on global bee populations, the basic biology of this species is not well understood.
    The present project aims to increase our knowledge of the N. ceranae’s biology by exploring the extent, nature and function of genome diversity that exist both within and between dozens of parasite samples isolated globally (i.e. Spain, France, Turkey, Thailand, USA..etc…).
  2. Population genomics of global isolates of the model plant symbiont, Rhizophagus irregularis

    The Arbuscular Mycorrhizal Fungi (AMF) are ubiquitous plant symbionts that improve the ability of roots to uptake nutrients from soil and provide protection against plant pathogens. These organisms are intriguing as they harbor many nuclei within one cytoplasm throughout their entire life cycle. The genetic organization of these nuclei has been debated for years, but recent genome analyses in our lab are providing essential insights to this debate.

    The proposed projects aims to increase our knowledge of biology and evolution of these curious fungi and critical symbionts by investigating the genome diversity within and across different strains of the model AMF R. irregularis sampled globally.

For specific enquiries please contactDr. Nicolas Corradi (ncorradi@uottawa.ca).

Applicants are expected to have a strong background in either comparative genomics or populations genomics. Experience in either population genetics, environmental genomics, metagenomics, or ab-initio gene annotation and programming will be seen as an asset for the final selection of the candidate. Some basic training in bioinformatics (Perl, Python, or R) is desired.

A complete application package includes a CV, a one-page description of past research accomplishments and future goals, and the names and e-mail addresses of at least 2 references. The position opens immediately, and evaluation of applications will continue until a suitable candidate is found.

The University of Ottawa is a large, research-intensive university, hosting over 40,000 students and located in the downtown core area of Canada’s capital city. Ottawa is a vibrant, multicultural city with a very high quality of life.

Applications can be sent to Dr. Nicolas Corradi (ncorradi@uottawa.ca).

Representative publications:

  • Pelin A., Selman M., Laurent Farinelli, Aris-Brosou S. and N. Corradi. 2015. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology
  • Ropars J. and N. Corradi. 2015. Heterokaryotic vs Homokaryotic Mycelium in the Arbuscular Mycorrhizal Fungi: Different Techniques, Different Results? New Phytologist
  • Corradi, N. 2015. Microsporidians: Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfer. Annual Review of Microbiology
  • Riley R., Charron P., Idnurm A., Farinelli F., Yolande D. , Martin F. and N. Corradi. 2014. Extreme diversification of the mating type–high?mobility group (MATA?HMG) gene family in a plant?associated arbuscular mycorrhizal fungus. New Phytologist
  • Tisserant E., Malbreil M. et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS

Basidiobolus! – genus of the month at ATCC

ATCC sent out this email with the Genus of the month as Basidiobolus. It is worth noting they call out B. ranarum as inhabitant of bat and rodent guts but it is mainly known (and named) for being associated with frogs (hence the ‘rana’). It has some quite cool biology, it grows dimorphically as a yeast or hyphae, and is reported to have a large genome (Henk and Fisher PLoS One 2012).
Note that the genome and transcriptome of B. meristosporus is being sequenced as part of the 1000 Fungal genomes project from samples Andrii Gryganski prepared. Don’t forget that YOU can propose genomes to this project by logging in here and submitting a proposed species in a family that is not sufficiently sampled (2 per Family).

The info below is from ATCC®. I couldn’t find a link to the on their site so I am copying the email text in.

There is nothing more fascinating than when a microbial species begins popping up in the literature as a true pathogen. Basidiobolus ranarum, which typically inhabits the guts of bats and small rodents, has been recently tagged as an emerging human pathogen that may have previously been unrecognized.1

       B. ranarum was first added to the CDC’s Morbidity and Mortality Weekly Report (MMWR)1 in 1999 after 6 immunocompetent individuals tested positive for gastrointestinal basidiobolomycosis over a 5-year period. The most interesting aspect of this study, however, was the fact that each patient was originally misdiagnosed with some other intestinal ailment, ranging from diverticulitis to cancer.

While many of the Zygomycetes, including Basidiobolus, have been implicated in subcutaneous human diseases, it is still relatively uncommon for Basidiobolus to colonize the human intestine. This new development piqued the interest of several researchers at the Mayo Clinic in Scottsdale, Arizona, a region of the U.S. where the majority of such cases have been reported.  Following an in-depth analysis of all known case records, they discovered a total of 44 cases of gastrointestinal basidiobolomycosis worldwide; 19 of which occurred in the southwestern U.S., 11 in Saudi Arabia, and 14 in other arid regions of the globe.2

Symptoms displayed in each case were similar, with complaints ranging from abdominal distention and pain to a palpable abdominal mass. Of particular interest was a patient originally treated for Clostridium difficile colitis. This patient underwent several surgeries and treatment with oral vancomycin before a stool fungal culture revealed the presence of B. ranarum. While this patient was successfully treated with a 3-month course of voriconazole, repeated at 1-year follow-up, the investigators cautioned that antifungal resistance may pose a problem in the future. Earlier work performed by the same group revealed uniform resistance to amphotericin B and flucytosine in four  B. ranarum isolates, as well as mixed resistance to several other azoles.2

The source of B. ranarum infection leading to gastrointestinal disease is still not understood, but the fecal-oral route has been suggested. Pathologists and clinicians should be aware of this potential new threat, and additional work to understand the pathogenesis and antifungal susceptibility/resistance of B. ranarum should be an on-going effort among the research and medical communities.

ATCC® Basidiobolus Strains
Want to learn more about ATCC Basidiobolus strains available from ATCC? View a list of Basidiobolus spp. online.

References

1. Centers for Disease Control and Prevention (CDC). MMWR: Gastrointestinal Basidiobolomycosis – Arizona, 1994-1999. August 20, 1999.

2. Vikram, et al. Emergence of Gastrointestinal Basidiobolomycosis in the United States, with a Review of Worldwide Cases. Clinical Infectious Diseases Advance Access published on March 22, 2012.

Myco-bio-diesel

Previously I posted on an article on making biodiesel using the fungus Gliocladium roseum. Here is a new study reporting conversion of lipids to biodiesel using the basidiomycete Cryptococcus curvatus. There has been also other progress in this area where Mucor circinelloides can also be used to produce oils suitable for biodiesel production as reported in the paper and the press release – though it is a pathogenic fungus with interesting spore size dimorphism.

Thiru M, Sankh S, & Rangaswamy V (2011). Process for biodiesel production from Cryptococcus curvatus. Bioresource technology PMID: 21930373

Horizontal gene transfer from Zygo to pea aphid

Pea AphidAnother result from the analysis of the recently published genome of the pea aphid, Acyrthosiphon pisum. Nancy Moran and Tyler Jarvik present a study of the origin of the carotenoid production gene in pea aphid. Animals typically cannot make carotenoids so they sought to discover how this is possible. They find that it is derived from a horizontal gene transfer event of a fungal gene into the aphid lineage. This gene is responsible for the red-green color polymorphism in the aphid. It appears the gene is derived from a ‘zygomycete’ or relative in the early branching lineage of the fungi. One gene, a carotenoid desaturase, is encoded in a 30kb genomic region that is missing in green aphids but present in the red morphs. The region is apparently maintained in the population by frequency dependent selection since each color has an advantage or disadvantage for evading detection by predators in different environments.

The reports of eukaryotic HGT event from fungi to animals is quite rare so this finding is surprising in that sense, but the authors argue that the important ecological role of carotenoids suggest we might see even more examples if we look harder.

Moran, N., & Jarvik, T. (2010). Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids Science, 328 (5978), 624-627 DOI: 10.1126/science.1187113

Methylation to the max!

A new paper from the Zilberman lab at UC Berkeley shows the application of high throughput sequencing to the study of DNA methylation in eukaryotes.  They generate an huge data set of whole genome methylation patterns in several plants, animals, and five fungi including early diverging Zygomycete.

The work was performed using Bisulfite sequencing (Illumina) to capture methylated DNA, RNA-Seq of mRNA. The also performed some ChIP-Seq of H2A.Z on pufferfish to look at the nucleosome positioning in that species. For aligning the reads, they used BowTie to align the bisulfite sequences (though I’d be curious how a new aligner, BRAT, designed for Bisulfite seq reads would perform) to the genome.  They also sequenced mRNA via RNA-Seq to assay gene expression for some of the species.

They find several interesting patterns in animal and fungal genomes.  I’ll highlight one in the fungi. They find an unexpected pattern in U. reesii of reduced CGs in repeats, which shows signatures of a RIP-like process, are also methylated.  This finding is also consistent with observations in Coccidioides (Sharpton et al, Genome Res 2009) that showed depleted CGs pairs in repeats.  Since the phenomenon is also found in Coccidioides genomes this methylation of some repeats is likely not unique to U. reesii but may be important in recent evolution of the Onygenales fungi or the larger Eurotiales fungi.  There are several other interesting findings with the first such study that shows methylation data for Zygomycete fungi and a basidiomycete close to my heart, Coprinopsis.  It will be interesting is to dig deeper into this data and see how the patterns of methylation compare to other genomic features and the mechanisms regulating methylation process.

Zemach, A., McDaniel, I., Silva, P., & Zilberman, D. (2010). Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation Science DOI: 10.1126/science.1186366

A cacophony of comparative genomics papers

A nice series of comparative genomics articles have been published in the last few weeks. The pace of genome sequencing has accelerated to the point that we have lots of sequencing projects coming from individual labs and small consortia not necessarily from genome centers. We are seeing a preview of what next (2nd) generation sequencing will enable and can start to imagine what happens when even cheaper 3rd generation sequencing technologies are applied. I’m behind in reviewing these papers for you, dear reader, but I hope you’ll click through and take a look at some of these papers if you are interested in the topics.

In the following set of papers we have some nice examples of comparative genomics of closely related species and among a clade of species. The papers mentioned below include our work on the human pathogens Coccidioides and Histoplasma (Sharpton et al) studied at several evolutionary distances, a study on Saccharomycetaceae (Souciet et al) clade of yeast species, and a comparison of two species of Candida (Jackson et al): the commensal and opportunistic fungal pathogen Candida albicans with a very closely related species Candida dubliensis.  There is also a nice comparison of strains of Saccharomyces cerevisiae looking at effects of domestication and examples of horizontal transfer.

There is also a report of de novo sequencing of a filamentous fungus using several approaches, traditional Sanger sequencing, 454, and Illumina/Solexa (DiGuistini et al).

Finally, a paper from a few months ago (Ma et al), gives a fantastic look at one of the early branches in the fungal tree – the Mucorales (formerly Zygomycota) – via the genome of Rhizopus oryzae.  This paper is a really excellent example of what we can learn about a group of species by contrasting genomic features in the early branches in the tree with the more well studied Ascomycete and Basidiomycete fungi.  More genome sequences will help us build on these findings and clarify if some of the observations are unique to the lineage or universal aspects of the earliest fungi.

I hope you enjoy!

Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J., Wincker, P., Casaregola, S., & Dequin, S. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118 Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0904673106 (via J Heitman)

Jackson, A., Gamble, J., Yeomans, T., Moran, G., Saunders, D., Harris, D., Aslett, M., Barrell, J., Butler, G., Citiulo, F., Coleman, D., de Groot, P., Goodwin, T., Quail, M., McQuillan, J., Munro, C., Pain, A., Poulter, R., Rajandream, M., Renauld, H., Spiering, M., Tivey, A., Gow, N., Barrell, B., Sullivan, D., & Berriman, M. (2009). Comparative genomics of the fungal pathogens Candida dubliniensis and C. albicans Genome Research DOI: 10.1101/gr.097501.109

DiGuistini, S., Liao, N., Platt, D., Robertson, G., Seidel, M., Chan, S., Docking, T., Birol, I., Holt, R., Hirst, M., Mardis, E., Marra, M., Hamelin, R., Bohlmann, J., Breuil, C., & Jones, S. (2009). De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 10 (9) DOI: 10.1186/gb-2009-10-9-r94 (open access)

Sharpton, T., Stajich, J., Rounsley, S., Gardner, M., Wortman, J., Jordar, V., Maiti, R., Kodira, C., Neafsey, D., Zeng, Q., Hung, C., McMahan, C., Muszewska, A., Grynberg, M., Mandel, M., Kellner, E., Barker, B., Galgiani, J., Orbach, M., Kirkland, T., Cole, G., Henn, M., Birren, B., & Taylor, J. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives Genome Research DOI: 10.1101/gr.087551.108 (open access)

Souciet, J., Dujon, B., Gaillardin, C., Johnston, M., Baret, P., Cliften, P., Sherman, D., Weissenbach, J., Westhof, E., Wincker, P., Jubin, C., Poulain, J., Barbe, V., Segurens, B., Artiguenave, F., Anthouard, V., Vacherie, B., Val, M., Fulton, R., Minx, P., Wilson, R., Durrens, P., Jean, G., Marck, C., Martin, T., Nikolski, M., Rolland, T., Seret, M., Casaregola, S., Despons, L., Fairhead, C., Fischer, G., Lafontaine, I., Leh, V., Lemaire, M., de Montigny, J., Neuveglise, C., Thierry, A., Blanc-Lenfle, I., Bleykasten, C., Diffels, J., Fritsch, E., Frangeul, L., Goeffon, A., Jauniaux, N., Kachouri-Lafond, R., Payen, C., Potier, S., Pribylova, L., Ozanne, C., Richard, G., Sacerdot, C., Straub, M., & Talla, E. (2009). Comparative genomics of protoploid Saccharomycetaceae Genome Research DOI: 10.1101/gr.091546.109 (open access)

Ma, L., Ibrahim, A., Skory, C., Grabherr, M., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B., Sone, T., Abe, A., Calvo, S., Corrochano, L., Engels, R., Fu, J., Hansberg, W., Kim, J., Kodira, C., Koehrsen, M., Liu, B., Miranda-Saavedra, D., O’Leary, S., Ortiz-Castellanos, L., Poulter, R., Rodriguez-Romero, J., Ruiz-Herrera, J., Shen, Y., Zeng, Q., Galagan, J., Birren, B., Cuomo, C., & Wickes, B. (2009). Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication PLoS Genetics, 5 (7) DOI: 10.1371/journal.pgen.1000549 (open access)