Category Archives: comparative

Chlamy genome investigations

Chlamy coverThis month’s Genetics has a series of articles exploring the genome (published last year & freely available at Science) of the green algae Chlamydomonas reinhardtii. These manuscripts are primarily genome analyses making for a very bioinformatics focused issue of Genetics. Some of the highlights include:

Podospora genome published

P.anserinaThe genome of Podospora anserina S mat+ strain was sequenced by Genoscope and CNRS and published recently in Genome Biology. The genome sequence data has been available for several years, but it is great to see a publication describing the findings.  The 10X genome assembly with ~10,000 genes provides an important dataset for comparisons among filamentous Sordariomycete fungi. The authors primarily focused on comparative genomics of Podospora to Neurospora crassa, the next closest model filamentous species.  Within the Sordariomycetes there are now a very interesting collection of closely related species which can be useful for applying synteny and phylogenomics approaches.

The analyses in the manuscript focused on these differences between Neurospora and Podospora identifying some key differences in carbon utilization contrasting the coprophillic (Podospora) and plant saprophyte (Neurospora).  There are several observations of gene family expansions in the Podospora genome which could be interpreted as additional enzyme capacity to break down carbon sources that are present in dung.

The genome of Neurospora has be shaped by the action of the genome defense mechanisms like RIP that has been on interpretation of the reduced number of large gene families and paucity of transposons. The authors report a surprising finding that in their analysis that despite sharing orthologs of genes that are involved in several genome defense, they in fact find fewer repetitive sequences in Podospora while it still fails to have good evidence of RIP.

Overall, these data suggest that P. anserina has experienced a fairly complex history of transposition and duplications, although it has not accumulated as many repeats as N. crassaP. anserina possesses all the orthologues of N. crassa factors necessary for gene silencing, including RIP, meiotic MSUD and also vegetative quelling, a post transcriptional gene silencing mechanism akin to RNA interference

I think this data and observations interleaves nicely with the work our group is exploring on evolution of genome of several Neurospora species which have different mating systems. The fact that the gene components that play a role in MSUD and a RIP are found in Podpospora but yet the degree of RIP and the lack of any observed meiotic silencing suggests some interesting occurrences on the Neurospora branch to be explored.  The potentially different degrees of RIP efficiency and types of mating systems (heterothallic and pseudohomothallic) among the Neurospora spp may also provide a link to understanding how RIP evolved and its role on N. crassa evolution.

Senescence in Podospora

Another aspect of Podopsora biology that isn’t touched on, is the use of the fungus as a model for senescence.  The fungus exhibits maternal senescence which involves targeted changes in the mitochondria that leads to cell death.  The evolutionary and molecular basis for this process has been of interest to many research groups and the genome sequence can provide an additional toolkit for identifying the factors involved in the apoptosis process in this filamentous fungi. Whether it will help find a real link for aging research in other eukaryotes remains to be seen, but it is a good model system for some aspects of how aging and damage to mtDNA are linked.

Espagne, E., Lespinet, O., Malagnac, F., Da Silva, C., Jaillon, O., Porcel, B.M., Couloux, A., Aury, J., et al (2008). The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biology, 9(5), R77. DOI: 10.1186/gb-2008-9-5-r77

Lest you think annotation is easy

Ensembl!Ewan Birney and Ensembl (the other/original genome browser depending on if you are a UCSC junkie) have started blogging a bit more about what is going on under the proverbial hood over there in Hinxton.  There are some great nuggets talking about what are some of the current problems.  These bite-sized comments should be a great glimpse into what is going on without drowning in the deluge that is ensembl-dev.  

This is a recent post on the challenges of gene annotation coordination among “manual” and “automated” annotation of gene structure of groups at the same institution.  

Scale that up among multiple genomes, genome centers, quality of prediction programs and assemblies, and you can see why the fungal genome comparisons could use a little bit more help. It is great to hear what the animal genome annotation groups are doing to solve informatics challenges and data management issues and coordination. I’m big fan of more informatics+science in the open where it is feasible. 

Comparing development

PZ Meyers has a post summarizing of an older paper from Elliot Meyerowitz (2002) that comapares plant and animal development. In particular there is are some major themes summarized about how plants and animals form patterns and cell to cell signaling as part of development. What’s missing is what we’ve learned about within group comparisons where there are multiple lineages of single-celled and multicelled forms like choanozoa/metazoa (See M. brevicolis genome paper) and green algae (VolvoxChlamydomonas comparisons are forthcoming, but see Chlamydomonas genome paper).

I hope some of our work will provide more data to include in the comparison of fungal, animal, and plant development in the not too distant future.

Phytopathogenic Fungi: what have we learned from genome sequences?

ResearchBlogging.orgA review in Plant Cell from Darren Soanes and colleagues summarizes some of the major findings about evolution of phytopathogenic fungi gleaned from genome sequencing highlighting 12 fungi and 2 oomycetes. By mapping evolution of genes identified as virulence factors as well as genes that appear to have similar patterns of diversification, we can hope to derive some principals about how phytopathogenic fungi have evolved from saprophyte ancestors.

They infer from phylogenies we’ve published (Fitzpatrick et al, James et al) that plant pathogenic capabilities have arisen at least 5 times in the fungi and at least 7 times in the eukaryotes. In addition they use data on gene duplication and loss in the ascomycete fungi (Wapinski et al) to infer there large numbers of losses and gains of genes have occurred in fungal lineages.

Continue reading Phytopathogenic Fungi: what have we learned from genome sequences?

Taking into account alignment uncertainty

WrightFisher talks about a paper & the commentary in Science describing how alignment uncertainty should be taken into account when doing phylogenetic analyses on genomic datastets (some might call this phylogenomics, but Dr Eisen won’t). If the sequence alignment is treated as a random variable (and in bayesian approaches have a prior based on result(s) from an alignment program) then more accurate reconstruction. Robin points out several statistical alignment approaches that do just this including TKF91 and recent work that unifies a probabilistic framework with transducers.

Sex in fungi: MAT locus cloned from a Zygomycete

On the cover of this week’s Nature is a picture of Phycomyces blakesleeanus Nature Coverhighlighting the discovery of the MAT locus in this Zygomycete fungus from Alex Idnurm and Joe Heitman and colleagues. While it was previously known that Zygomycetes (the Orange lineage represented by R. oryzae in the tree below) mate, the specific locus has until now, never been discovered. The authors in this study identified the MAT locus through a sequence search looking for HMG-box genes knowing that these are found the Mating Type locus in Basidiomycetes and Ascomycetes. They confirmed the identity through a through set of experiments that included PCR, sequencing and crosses of (+) and (-) strains of P. blakesleeanus, and Southern blots.

Continue reading Sex in fungi: MAT locus cloned from a Zygomycete

Saccharomyces strain sequencing

Blogging on Peer-Reviewed ResearchWhile many strains of S. cerevisiae are being sequenced, a single strain, YJM789, isolated from the lung of an AIDS patient was sequenced a few years ago at Stanford and published this summer. The genome was described in a paper entitled “Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789”.

Continue reading Saccharomyces strain sequencing


Robin reviews recent Nature paper by Ilan Wapinski et al describing the orthogroups they built from multiple fungal genomes. I’ve been remiss in reviewing the paper myself, but they’ve created an important resource in the SYNERGY tool for orthology identification and a database of orthologs of some ascomycete fungi. I am excited there is a level of interest in the properties of gene duplication and how this may be an important aspect of adaptation and evolution. corn smut

The Cornell Mushroom blog has a nice treatment of the maize pathogen and Mexican delicacy Ustilago maydis corn smut.

Chris and Tom took some more Coprinus pictures while I was away from the lab.

Yes, Ecology can improve Genomics

Blogging on Peer-Reviewed ResearchFew organisms are as well understood at the genetic level as Saccharomyces cerevisiae. Given that there are more yeast geneticists than yeast genes and exemplary resources for the community (largely a result of their size), this comes as no surprise. What is curious is the large number of yeast genes for which we’ve been unable to characterize. Of the ~6000 genes currently identified in the yeast genome, 1253 have no verified function (for the uninclined, this is roughly 21% of the yeast proteome). Egads! If we can’t figure this out in yeast, what hope do we have in non-model organisms?Lourdes Peña-Castillo and Timothy R. Hughes discuss this curious observation and its cause in their report in Genetics.

Continue reading Yes, Ecology can improve Genomics