Category Archives: pathogens

A cacophony of comparative genomics papers

A nice series of comparative genomics articles have been published in the last few weeks. The pace of genome sequencing has accelerated to the point that we have lots of sequencing projects coming from individual labs and small consortia not necessarily from genome centers. We are seeing a preview of what next (2nd) generation sequencing will enable and can start to imagine what happens when even cheaper 3rd generation sequencing technologies are applied. I’m behind in reviewing these papers for you, dear reader, but I hope you’ll click through and take a look at some of these papers if you are interested in the topics.

In the following set of papers we have some nice examples of comparative genomics of closely related species and among a clade of species. The papers mentioned below include our work on the human pathogens Coccidioides and Histoplasma (Sharpton et al) studied at several evolutionary distances, a study on Saccharomycetaceae (Souciet et al) clade of yeast species, and a comparison of two species of Candida (Jackson et al): the commensal and opportunistic fungal pathogen Candida albicans with a very closely related species Candida dubliensis.  There is also a nice comparison of strains of Saccharomyces cerevisiae looking at effects of domestication and examples of horizontal transfer.

There is also a report of de novo sequencing of a filamentous fungus using several approaches, traditional Sanger sequencing, 454, and Illumina/Solexa (DiGuistini et al).

Finally, a paper from a few months ago (Ma et al), gives a fantastic look at one of the early branches in the fungal tree – the Mucorales (formerly Zygomycota) – via the genome of Rhizopus oryzae.  This paper is a really excellent example of what we can learn about a group of species by contrasting genomic features in the early branches in the tree with the more well studied Ascomycete and Basidiomycete fungi.  More genome sequences will help us build on these findings and clarify if some of the observations are unique to the lineage or universal aspects of the earliest fungi.

I hope you enjoy!

Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J., Wincker, P., Casaregola, S., & Dequin, S. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118 Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0904673106 (via J Heitman)

Jackson, A., Gamble, J., Yeomans, T., Moran, G., Saunders, D., Harris, D., Aslett, M., Barrell, J., Butler, G., Citiulo, F., Coleman, D., de Groot, P., Goodwin, T., Quail, M., McQuillan, J., Munro, C., Pain, A., Poulter, R., Rajandream, M., Renauld, H., Spiering, M., Tivey, A., Gow, N., Barrell, B., Sullivan, D., & Berriman, M. (2009). Comparative genomics of the fungal pathogens Candida dubliniensis and C. albicans Genome Research DOI: 10.1101/gr.097501.109

DiGuistini, S., Liao, N., Platt, D., Robertson, G., Seidel, M., Chan, S., Docking, T., Birol, I., Holt, R., Hirst, M., Mardis, E., Marra, M., Hamelin, R., Bohlmann, J., Breuil, C., & Jones, S. (2009). De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 10 (9) DOI: 10.1186/gb-2009-10-9-r94 (open access)

Sharpton, T., Stajich, J., Rounsley, S., Gardner, M., Wortman, J., Jordar, V., Maiti, R., Kodira, C., Neafsey, D., Zeng, Q., Hung, C., McMahan, C., Muszewska, A., Grynberg, M., Mandel, M., Kellner, E., Barker, B., Galgiani, J., Orbach, M., Kirkland, T., Cole, G., Henn, M., Birren, B., & Taylor, J. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives Genome Research DOI: 10.1101/gr.087551.108 (open access)

Souciet, J., Dujon, B., Gaillardin, C., Johnston, M., Baret, P., Cliften, P., Sherman, D., Weissenbach, J., Westhof, E., Wincker, P., Jubin, C., Poulain, J., Barbe, V., Segurens, B., Artiguenave, F., Anthouard, V., Vacherie, B., Val, M., Fulton, R., Minx, P., Wilson, R., Durrens, P., Jean, G., Marck, C., Martin, T., Nikolski, M., Rolland, T., Seret, M., Casaregola, S., Despons, L., Fairhead, C., Fischer, G., Lafontaine, I., Leh, V., Lemaire, M., de Montigny, J., Neuveglise, C., Thierry, A., Blanc-Lenfle, I., Bleykasten, C., Diffels, J., Fritsch, E., Frangeul, L., Goeffon, A., Jauniaux, N., Kachouri-Lafond, R., Payen, C., Potier, S., Pribylova, L., Ozanne, C., Richard, G., Sacerdot, C., Straub, M., & Talla, E. (2009). Comparative genomics of protoploid Saccharomycetaceae Genome Research DOI: 10.1101/gr.091546.109 (open access)

Ma, L., Ibrahim, A., Skory, C., Grabherr, M., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B., Sone, T., Abe, A., Calvo, S., Corrochano, L., Engels, R., Fu, J., Hansberg, W., Kim, J., Kodira, C., Koehrsen, M., Liu, B., Miranda-Saavedra, D., O’Leary, S., Ortiz-Castellanos, L., Poulter, R., Rodriguez-Romero, J., Ruiz-Herrera, J., Shen, Y., Zeng, Q., Galagan, J., Birren, B., Cuomo, C., & Wickes, B. (2009). Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication PLoS Genetics, 5 (7) DOI: 10.1371/journal.pgen.1000549 (open access)

Updated Cryptococcus serotype A annotation

SEM of clamp cell, yeast cells and sexual spore chains. Courtesy R. Velagapudi & J. Heitman

A new and improved annotation of Cryptococcus neoformans var grubii strain H99 (serotype A) has been made available in GenBank and the Broad Institute website. This update is collaboration between several groups providing data and analyses and the genome annotation team at the Broad Institute.

Some changes noted by the Broad Institute include:

“This release of gene predictions for the serotype A isolate Cryptococcus neoformans var. grubii H99 is based on a new genomic assembly provided by Dr. Fred Dietrich at the Duke Center for Genome Technology. The new assembly consists of 14 nuclear chromosomes and a single 21 KB mitochondrial chromosome, and has resulted in a reduction of the estimated genome size from 19.5 to 18.9 Mb. Improvements in the assembly and in our annotation process have resulted in a set of 6,967 predicted protein products, 335 fewer than the previous release.”

How to get A. fumigatus in the mood for love

ResearchBlogging.org A manuscript at Nature AOP details the success of the Dyer lab and collaborators in encouraging Aspergillus fumigatus to complete the sexual cycle under observable (e.g. laboratory) conditions. The authors are the teleomorph (sexual or perfect) stage Neosartorya fumigata for a fungus that had been previously only had an observed anamorphic stage. A. fumigatus can reproduce asexually forming structures called conidiophores which produce asexual spores called conidiospores (or mitospores as they are produced via mitosis) define the anamorph or imperfect stage, but no sexual structures such as cleistothecia that produce the packaged sexual products as ascospores. See a presentation by David Geiser (archived at the Aspergillus website) for more detail on some of the morphological and phylogenetic characters that unify the group of Eurotiales fungi.

Like several other groups of fungi, A. fumigatus was presumed to have a putative cryptic sexual stages inferred from population genetic evidence of sexual recombination, but until no telemorphs had been observed. In addition, an observed perfect stage doesn’t necessarily indicate it is easy to induce mating in laboratory conditions. Complicated media including the ever stressful V8 juice was needed to induce mating in the basidiomycete yeast Cryptococcus neoformans (Erke, J Bacteriol 1976). In fact, Christina Hull’s lab has shown we still don’t even know what ingredients in V8 juice even induce mating (Kent et al, AEM 2008)! Other fungi including Coccidioides have been implicated as cryptically sexual (Burt et al, PNAS 1996) but no one has been able to induce mating in laboratory conditions. In this case a petri plate with a individual of each mating type (since this is a heterothallic fungus), and a series of different media conditions provided an environment suitable for mating to occur.

The work in this paper follows from their previous work identifying isolates of different mating types (Paoletti, Current Biol, 2005). The discovery of sexual stage for Aspergillus fumigatus (which Bret cannot pronounce) is a boon for molecular geneticists in construction of knockout strains and ability to follow recombination. While A. nidulans is a sexual species and model system for genetics, it is useful to have more tools to directly manipulate A. fumigatus and directly test hypotheses about genes involved in pathogenicity.

This observation of meiosis in the laboratory is also is interesting to considered in light of work that RIP is active in other Aspergillus species (and also see this post) suggesting that RIP may be operating under meiotic conditions.

Isolates of different mating types have also been described for the putatively asexual Coccidioiodes (Mandell et al, EC 2007; Fraser et al, EC 2007) so it remains a possibility that we can also induce sexual recombination in laboratory conditions in this fungus.

Céline M. O’Gorman, Hubert T. Fuller, Paul S. Dyer (2008). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus Nature DOI: 10.1038/nature07528

Genome survey sequencing of Witches’ Broom

Genome survey sequencing (1.9X coverage) was generated for Moniliophthora perniciosa, the cause of witches’ broom disease on cacao plants. The sequence for this basidiomycete plant pathogen was published in BMC Genomics this week. The authors report a higher number of ROS metabolism and P450 genes. Evaluating whether these copy number differences are significantly different from other basidiomycete fungi and are lineage specific expansions will help determine if these families played a role in the adaptation of this plant pathogen.

This work provides an important stepping stone in understanding and eventually controlling this pathogen which is devastating cacao plantations. An associated review describes what we have and can learn about Witches’ broom disease.

See related:

Jorge MC Mondego, Marcelo F Carazzolle, Gustavo GL Costa, Eduardo F Formighieri, Lucas P Parizzi, Johana Rincones, Carolina Cotomacci, Dirce M Carraro, Anderson F Cunha, Helaine Carrer, Ramon O Vidal, Raissa C Estrela, Odalys Garcia, Daniela PT Thomazella, Bruno V de Oliveira, Acassia BL Pires, Maria Carolina S Rio, Marcos Renato R Araujo, Marcos H de Moraes, Luis AB Castro, Karina P Gramacho, Marilda S Goncalves, Jose P Moura Neto, Aristoteles Goes Neto, Luciana V Barbosa, Mark J Guiltinan, Bryan A Bailey, Lyndel W Meinhardt, Julio CM Cascardo, Goncalo AG Pereira (2008). A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao BMC Genomics, 9 (1) DOI: 10.1186/1471-2164-9-548

Bat White-nose syndrome brevia

A Brevia piece in Science today describes efforts to describe the causal agent in white-nose syndrome (WNS) in bats which appears to be contributing to bat decline. According to the authors, previous work had described an uncharacterized fungus associated with bats that showed signs of being sick with WNS. This is an emerging pathogen as the samples described in this paper were from Spring 2008. Phylogenetic analysis of the rDNA (and presumably ITS) sequence of fungal isolates from diseased bats placed it as a Geomyces spp, in the Helotiales order (in the Leotiomycetes if you are wondering what are the closest sequenced fungal genomes for this species). Other Geomyces spp are also psychrophiles and found colonizing the skin of animals in cold climates (it must be hard to make a living). The authors suggest the finding of this fungal species on bats is consistent with its involvement in disease. The authors also make the parallel to chytridiomycosis, an emerging pathogen of amphibians that is contributing to the worldwide amphibian decline.

This is just the first of hopefully several publications studying this phenomenon as this brief piece sets the stage for additional questions. It is not yet been shown that this fungus is actually causing the disease, i.e. satisfying Koch’s postulates, and isn’t just a canary in the coal mine. So-called opportunistic fungi like Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans cause infections that emerge after the patient’s immune system has been compromised by something else such as HIV or immunosuppressant drugs as part of an organ transplant regime. It is possible that the white-nose syndrome (ie white conidia from Geomyces sp is just a manifestation of an infection of a commensal organism like thrush or yeast infections of Candida albicans that only emerge when something else has knocked down the host’s immune system. I don’t know if this same Geomyces sp can be cultured from healthy bats from so-far uninfected colonies which would suggest the fungus is present all the time.

As we track and learn more about natural die-offs and disease in animals from infectious diseases there are series of recent fungal-associated disease of animal populations including honeybees perhaps from a virus and a microsporidium, frogs and amphibians via Batrachochytrium dendrobatidis, and white-nose syndrome. Diseases like Cryptococcus gattii are also examples of pathogens that may be able to infect healthy animals and humans. It seems quite important to know more important to track and study how these outbreaks spread and the evolutionary and ecological basis for the sudden rise in infection and mortality in animal populations to understand diseases of human relevance as well.

Related links:

D. S. Blehert, A. C. Hicks, M. Behr, C. U. Meteyer, B. M. Berlowski-Zier, E. L. Buckles, J. T. H. Coleman, S. R. Darling, A. Gargas, R. Niver, J. C. Okoniewski, R. J. Rudd, W. B. Stone (2008). Bat White-Nose Syndrome: An Emerging Fungal Pathogen? Science DOI: 10.1126/science.1163874

Bats beware of white nose

An outbreak of a fungal infection called “white-nose syndrome” is killing bats in the Northeastern US.  This New Scientist article mentions the outbreak briefly and an NPR story and recent Boston Globe story also gives it some coverage.  Sounds like we still don’t know much about the causal agent or how it is killing the bats at this time, but some researchers, including Elizabeth Buckles at Cornell University, Vishnu Chaturvedi at NY State Dept of Health, and Jon Reichard at Boston University are working on it.

This is of course old news if you read what Hyphoid Logic has been saying.

That there is a previously undescribed cold loving fungus sounds very interesting, there have been some recent discoveries of psychrophilic fungi like Cryptococcus laurentii and Rhodotorula himalayensis so it would be interesting to learn more when the researchers publish some of these results.

Some more links

Thanks Kathyrn B for reminder about this story.

Will you always be able to satisfy that chocolate craving?

Crinipellis_perniciosa_mushroomNPR had a story this weekend on Cocoa plantation collapse and the ecological aftermath of the changes the witches’ broom fungus Moniliophthora perniciosa has wreaked. The genome sequence project for this Homobasidiomycete fungus (also known as Crinipellis perniciosa, phylogenetic relationships discussed by Aime and Philips-Mora 2005) is underway at the Laboratory Genomica e Expressao at UNICAMP, Brazil.  The witches’s broom (not this witches’ broom) is named because of the bristly form it induces in the cacao plants.

The genome project will hopefully improve the diagnosis and treatment work that is needed.  Beyond the insatiable need for chocolate, the NPR story does talk about the impact on farmers, the economy, and the environment with the loss of these cacao plantations.

Some links:

I was also browsing some articles on other fungi that inhabit cacao plants and saw a recent survey that includes fungi that produce mycotoxins.

Phytophthora work highlighted

A link to the story about Matteo Garbelotto‘s work on Phytophthora ramorum and showing that the source in California is likely from ornamentals from a nursery. The work is to appear soon in Molecular Ecology but alas is not available yet.

A recent paper on updated Phytophthora phylogeny from Jamie Blair and co-authors is also out in FGB. They used genome sequences to determine additional markers for multi-locus sequencing and then sequenced and built trees from 82 taxa.