Tag Archives: definitions

Trichoderma reesei genome paper published

TrichodermaThe Trichoderma reesei genome paper was recently published in Nature Biotechnology from Diego Martinez at LANL with collaborators at JGI, LBNL, and others. This fungus was chosen for sequencing because it was found on canvas tents eating the cotton material suggesting it may be a good candidate for degrading cellulose plant material as part of cellulosic ethanol or other biofuels production.  The fungus also has starring roles in industrial processes like making stonewashed jeans due to its prodigious cellulase production.

The most surprising findings from the paper include the fact that there are so few members of some of the enzyme families even though this fungus is able to generate enzymes with so much cellulase activity. The authors found that there is not a significantly larger number of glucoside hydrolases which is a collection of carbohydrate degrading enzymes great for making simple sugars out of complex ones. In fact, several plant pathogens compared (Fusarium graminearum and Magnaporthe grisea) and the sake fermenting Aspergillus oryzae all have more members of this family than does.  T. reesei has almost the least (36) copies of a cellulose binding domain (CBM) of any of the filamentous ascomycete fungi.  They used the CAZyme database (carbohydrate active enzymes) database which has done a fantastic job building up profiles of different enzymes involved in carhohydrate degradation binding, and modifications.

Whether T. reesei is really the best cellulose degrading fungus is definitely an open question.  That it works well in the industrial culture that it has been utilized in is important, but there may be other species of fungi with improved cellulase activity and who may in fact have many more copies of cellulases.  So it will be good to add other fungi to the mix with quantitative information about degradation to try and glean what are the most important combination of enzymes and activities.

One technical note.  The comparison of copy number differences employed in the paper is a simple enough Chi-Squared, work that I’ve done with Matt Hahn and others include a gene family size comparison approach that also taked into account phylogenetic distances and assumes a birth-death process of gene family size change.  It would be great to apply the copy number differences through this or other approaches that just evaluate gene trees for these domains to see where the differences are significant and if they can be polarized to a particular branch of the tree.

So will this genome sequence lead to cheaper, better biofuel production? Certainly it provides an important toolkit to start systematically testing individual cellulase enzymes. It’s hard to say how fast this will make an impact, but the work of JBEI and a host of other research groups and biotech companies are going to be able to systematically test out the utility of these individual enzymes.

There is also evolutionary work by other groups on the evolution of these Hypocreales fungi trying to better define when biotrophic and heterotrophic transitions occurred to sample fungi with different lifestyles that might have different cellulase enyzmes that may not have been observed. Defining the relationships of these fungi and when and how many times transitions to lifestyles occurred to choose the most diverse fungi may be an important part of discovering novel enzymes.

Also see

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology DOI: 10.1038/nbt1403

(re)Annotating GenBank

NCBI LogoTom Bruns, Martin Bidartondo and 250 others sent a letter to Science describing the current problems with fixing annotation in GenBank. There is an entertaining accompanying news article that interviews several people about the problem of updating annotation and species assigned to sequences in the database. In particular the problem for mycologists that many fungi found from metagenomic approaches are only identified through molecular sequences and having the wrong species associated with a sequence can be difficult when studying community ecology composition.  This problem is not limited to fungi by any means, but recent reports find as many as 20% of fungal Intergenic Spacer (ITS) sequences are mis-attributed to the wrong species. 

There’s a nice quote in the news article from Steven Salzberg talking about the difficulties in getting sequences, especially from big centers, updated. I’m sure he is thinking of many examples, like reclassifying some Drosophila sequence traces.

Continue reading (re)Annotating GenBank

Cryptococcus species deliniation

ResearchBlogging.org What delineates species boundaries in fungi? Much work has been done on biological and phylogenetic species concepts in fungi. Some concepts are reviewed in Taylor et al 2006 and in Taylor et al 2000, and applications can be seen in several pathogens such as Paraccocidiodies, Coccidioides, and the model filamentous (non-pathogenic) fungus Neurospora.

A paper in Fungal Genetics and Biology on species definitions in Cryptococcus neoformans from multi-locus sequencing seeks to provide additional treatment of the observed diversity. A large study of 117 Cryptococcus isolates were examined through multi-locus sequencing (6 loci) and identified two monophyletic lineages within C. neoformans varieties that correspond to var. neoformans and var. grubii. However within the C. gattii samples they identified four monophyletic groups consistent with deep divergences observed from whole genome trees for two strains of C. gattii, MLST, and AFLP studies. By first defining species, we can now test whether any of the species groups have different traits including prevalence in clinical settings and in nature.

BOVERS, M., HAGEN, F., KURAMAE, E., BOEKHOUT, T. (2007). Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genetics and Biology DOI: 10.1016/j.fgb.2007.12.004

Defining “gene”

Blogging about Peer-Reviewed ResearchThe term “gene” might be tired and perhaps because it can have many different meanings – (don’t get us started on homolog!). We of course know that one gene/one enzyme hypothesis and the central dogma fails to represent full complexity of the RNA world, pre- and post-transcriptional gene regulation, and post-transcriptional modifications. An article in PLoS One “Beyond the Gene” from Evelyn Fox Keller and David Harel tackles the perhaps overly stretched definition of the gene.

Continue reading Defining “gene”

Fungal Genetics 2007 details

I’m including a recapping as many of the talks as I remember. There were 6 concurrent sessions each afternoon so you have to miss a lot of talks. The conference was bursting at the seams as it was- at least 140 people had to be turned away beyond the 750 who attended.

If there was any theme in the conference it was “Hey we are all using these genome sequences we’ve been talking about getting”. I only found the overview talks that solely describe the genome solely a little dry as compared to those more focused on particular questions. I guess my genome palate is becoming refined.

Continue reading Fungal Genetics 2007 details