Tag Archives: extremophiles

Some links

ResearchBlogging.org

I’ve been too busy to post much these last few days, but here are a few links to some papers I found interesting in my recent browsing.

Schmitt, I., Partida-Martinez, L.P., Winkler, R., Voigt, K., Einax, E., Dölz, F., Telle, S., Wöstemeyer, J., Hertweck, C. (2008). Evolution of host resistance in a toxin-producing bacterial–fungal alliance. The ISME Journal DOI: 10.1038/ismej.2008.19

LEVASSEUR, A. (2008). FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genetics and Biology DOI: 10.1016/j.fgb.2008.01.004

Shivaji, S., Bhadra, B., Rao, R.S., Pradhan, S. (2008). Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles DOI: 10.1007/s00792-008-0144-z

Melaninized fungi use ionizing radiation for energy

Blogging about Peer-Reviewed ResearchA recent paper in PLoS One entitled Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi describes some pretty amazing results that have gotten some press lately. The lead author, Dr Dadachova, spoke on NPR’s Science Friday last week about how melanized fungi are able to use ionizing radiation for energy as seen in the enhanced growth in their experiments.

While this is the first report of such as result, the fact that innovation occurs wherever there is free energy is not surprising. As mentioned by Arturo Casadevall this story in the spring when he was gave a seminar at Berkeley, marine organisms that live near undersea hydrothermal vents have been able to photosynthesize the infrared light emitted from the vent. He discussed the radiation utilization of melanized fungal work at the end of his talk, and said that it has been an epic process to get it published — that this work had been in review for four years at several high profile journals, but I guess that it was controversial enough to not be accepted there. I guess Nature and Science get it now since they wrote news briefs…

Continue reading Melaninized fungi use ionizing radiation for energy

Gut check

Ever wonder what goes on in a cow’s multi-chambered stomach? Probably not. I did think about it a little more after a trip to a teaching farm during grad school where we saw a cow with a fistula. This hole provides access to the cows stomach so that samples can be drawn of the community living in the gut and understand how the bovine stomach can digest the recalcitrant cellulose of grasses.

Of course all kinds of lovely things live in the dark, anaerobic environment. In fact there is a delicately balanced community of species. When cows are fed corn instead of grass this affects the rumen acid content and allows pathogenic E. coli like O:157 to survive. So far I don’t seen any JGI proposal for sequencing of the gut communities of rumens, but maybe that should be proposed.

Rumen fungi are probably not on your keyword list, but these fungi are extremomophiles living in highly anaerobic environment. A paper in Microbiology details an analysis of the genome of the anaerobic fungus Orpinomyces.