Tag Archives: magnaporthe

Few fungi+host papers

Three papers on some cool fungi that interact with hosts and I recommend them for a good read.

One is coverage of by Ed Yong on rice blast (Magnaporthae orzyae) on paper from Nick Talbot and Gero Steinberg‘s lab on appressorium development in Science this week.

A paper from my lab on role of an expansion of copy number of a chitin-binding domain in the amphibian pathogen B. dendrobatidis.

New Scientist also provides a nice summary of tripartite symbiosis paper on Metarhizium, insects, and plants from Mike Bidochka’s lab.

Trichoderma reesei genome paper published

TrichodermaThe Trichoderma reesei genome paper was recently published in Nature Biotechnology from Diego Martinez at LANL with collaborators at JGI, LBNL, and others. This fungus was chosen for sequencing because it was found on canvas tents eating the cotton material suggesting it may be a good candidate for degrading cellulose plant material as part of cellulosic ethanol or other biofuels production.  The fungus also has starring roles in industrial processes like making stonewashed jeans due to its prodigious cellulase production.

The most surprising findings from the paper include the fact that there are so few members of some of the enzyme families even though this fungus is able to generate enzymes with so much cellulase activity. The authors found that there is not a significantly larger number of glucoside hydrolases which is a collection of carbohydrate degrading enzymes great for making simple sugars out of complex ones. In fact, several plant pathogens compared (Fusarium graminearum and Magnaporthe grisea) and the sake fermenting Aspergillus oryzae all have more members of this family than does.  T. reesei has almost the least (36) copies of a cellulose binding domain (CBM) of any of the filamentous ascomycete fungi.  They used the CAZyme database (carbohydrate active enzymes) database which has done a fantastic job building up profiles of different enzymes involved in carhohydrate degradation binding, and modifications.

Whether T. reesei is really the best cellulose degrading fungus is definitely an open question.  That it works well in the industrial culture that it has been utilized in is important, but there may be other species of fungi with improved cellulase activity and who may in fact have many more copies of cellulases.  So it will be good to add other fungi to the mix with quantitative information about degradation to try and glean what are the most important combination of enzymes and activities.

One technical note.  The comparison of copy number differences employed in the paper is a simple enough Chi-Squared, work that I’ve done with Matt Hahn and others include a gene family size comparison approach that also taked into account phylogenetic distances and assumes a birth-death process of gene family size change.  It would be great to apply the copy number differences through this or other approaches that just evaluate gene trees for these domains to see where the differences are significant and if they can be polarized to a particular branch of the tree.

So will this genome sequence lead to cheaper, better biofuel production? Certainly it provides an important toolkit to start systematically testing individual cellulase enzymes. It’s hard to say how fast this will make an impact, but the work of JBEI and a host of other research groups and biotech companies are going to be able to systematically test out the utility of these individual enzymes.

There is also evolutionary work by other groups on the evolution of these Hypocreales fungi trying to better define when biotrophic and heterotrophic transitions occurred to sample fungi with different lifestyles that might have different cellulase enyzmes that may not have been observed. Defining the relationships of these fungi and when and how many times transitions to lifestyles occurred to choose the most diverse fungi may be an important part of discovering novel enzymes.

Also see

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology DOI: 10.1038/nbt1403

That was a lot of work

I’ve never worked with Magnaporthe grisea, the fungus responsible for rice blast, one of the most devastating crop diseases, but I do know that its life cycle is complicated and that knocking out roughly 61% of the genes in the genome and evaluating the mutant phenotype to infer gene function is not trivial. In their recent letter to Nature, Jeon et al did what many of us have dreamed of doing in our fungus of interest: manipulate every gene to find those that contribute to a phenotype of interest.

In their study, the authors looked for pathogenecity genes. Interestingly, the defects in appressorium formation and condiation had the strongest correlation with defects pathogenicity, suggesting that these two developmental stages are crucial for virulence. Ultimately, the authors identify 203 loci involved in pathogenecity, the majority of which have no homologous hits in the sequence databases and have no clear enriched GO functions. Impressively, this constitutes the largest, unbiased list of pathogenecity genes identified for a single species (though so of us, I’m sure, may have a problem with the term “unbiased”).

If you’d like to play with their data, the authors have made it available in their ATMT Database.

Deeper and Deeper, Down the Transcriptome-hole We Fall

Your eye contains the same genetic content as your fingernail, but these two tissues look nothing alike. One significant cause of this difference is the tissue specific regulation of the genes in the genome. In some tissues in your body, a gene may be expressed (transcribed) while that same gene may be silent in another tissue type. A great deal of modern biological research explores the regulation of expression of all the genes in a genome, collectively known as the transcriptome. Such studies are, for example, aimed at understanding which genetic regulation events account for the differences between an eye and a fingernail.

However, the effectiveness of this research is predicated upon actually knowing which parts of the genome are capable of being expressed and, subsequently, regulated. Conventionally, researchers extract RNA from an organism grown in various conditions (or, as in the case of our example, various tissues from an organism) and clone and sequence the RNA to identify at least a subset of genes that are expressed (Ebbole 2004*). Such Expressed Sequence Tags (ESTs) have proven vital to our understanding of gene and gene structure annotation as they frequently provide evidence of intron splice sites. While this method has facilitated a robust understanding of gene regulation, it is expensive, time consuming, and provides a relatively low coverage of the transcriptome. If our goal is to understand everything that is expressed, then we need a superior tool.

Enter SAGE (serial analysis of gene expression) and MPSS (massively parallel signature sequencing) [Irie 2003*, Harbers 2005*]. Both methods sequence short tags of a transcript’s 3′ end. SAGE uses conventional sequencing technology while MPSS uses Solexa, Inc.’s novel bead-based hybridization technology. One of the massive advantages of these technologies is the number of sequences they provide: large EST databases are on the order of several tens of thousands, while SAGE generally provides 100,000 to 200,00 tags and MPSS can provide over a million signatures. That being said, there are still questions regarding the sensitivity of the depth of coverage of the transcriptome. It may well be that despite a lower total sequence count, ESTs provide more information about what parts of the genome are expressed.

Fortunately, Gowda et al put all three methods to work as well as an RNA microarray (which doesn’t provide sequence, but enables its inference through hybridization) in their recent study of the Magnaporthe grisea transcriptome [Gowda 2006]. M. grisea is the causative agent of rice blast, a devastating disease that results in tremendous crop yield loss. The researchers evaluated two tissues types: the non-pathogenic mycelium and the invasive, plant penetrating appressorium.

Interestingly, 40% of the MPSS tags and 55% of the SAGE tags identified represent novel genes as they had no matches in the existing M. grisea JGI EST collection. Additionally, the authors found that no one method could identify the majority of the transcripts, but that a two-way combination of array data, MPSS or SAGE could provide over 80% of the total unique transcripts all of the methods identified. One additional suprise was that roughly a quarter of the genes identified also produced an antisense RNA, possibly for siRNA regulation of the gene.

The long story short appears to be that there is, as of yet, no magic bullet of a method. To adequately cover the transcriptome, multiple techniques are required.

*These references are, unfortunately, not located in an open access journal.