Tag Archives: phylogenetics

Trichoderma reesei genome paper published

TrichodermaThe Trichoderma reesei genome paper was recently published in Nature Biotechnology from Diego Martinez at LANL with collaborators at JGI, LBNL, and others. This fungus was chosen for sequencing because it was found on canvas tents eating the cotton material suggesting it may be a good candidate for degrading cellulose plant material as part of cellulosic ethanol or other biofuels production.  The fungus also has starring roles in industrial processes like making stonewashed jeans due to its prodigious cellulase production.

The most surprising findings from the paper include the fact that there are so few members of some of the enzyme families even though this fungus is able to generate enzymes with so much cellulase activity. The authors found that there is not a significantly larger number of glucoside hydrolases which is a collection of carbohydrate degrading enzymes great for making simple sugars out of complex ones. In fact, several plant pathogens compared (Fusarium graminearum and Magnaporthe grisea) and the sake fermenting Aspergillus oryzae all have more members of this family than does.  T. reesei has almost the least (36) copies of a cellulose binding domain (CBM) of any of the filamentous ascomycete fungi.  They used the CAZyme database (carbohydrate active enzymes) database which has done a fantastic job building up profiles of different enzymes involved in carhohydrate degradation binding, and modifications.

Whether T. reesei is really the best cellulose degrading fungus is definitely an open question.  That it works well in the industrial culture that it has been utilized in is important, but there may be other species of fungi with improved cellulase activity and who may in fact have many more copies of cellulases.  So it will be good to add other fungi to the mix with quantitative information about degradation to try and glean what are the most important combination of enzymes and activities.

One technical note.  The comparison of copy number differences employed in the paper is a simple enough Chi-Squared, work that I’ve done with Matt Hahn and others include a gene family size comparison approach that also taked into account phylogenetic distances and assumes a birth-death process of gene family size change.  It would be great to apply the copy number differences through this or other approaches that just evaluate gene trees for these domains to see where the differences are significant and if they can be polarized to a particular branch of the tree.

So will this genome sequence lead to cheaper, better biofuel production? Certainly it provides an important toolkit to start systematically testing individual cellulase enzymes. It’s hard to say how fast this will make an impact, but the work of JBEI and a host of other research groups and biotech companies are going to be able to systematically test out the utility of these individual enzymes.

There is also evolutionary work by other groups on the evolution of these Hypocreales fungi trying to better define when biotrophic and heterotrophic transitions occurred to sample fungi with different lifestyles that might have different cellulase enyzmes that may not have been observed. Defining the relationships of these fungi and when and how many times transitions to lifestyles occurred to choose the most diverse fungi may be an important part of discovering novel enzymes.

Also see

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G., Grigoriev, I.V., Harris, P., Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson, J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A.A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P., Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology DOI: 10.1038/nbt1403

(re)Annotating GenBank

NCBI LogoTom Bruns, Martin Bidartondo and 250 others sent a letter to Science describing the current problems with fixing annotation in GenBank. There is an entertaining accompanying news article that interviews several people about the problem of updating annotation and species assigned to sequences in the database. In particular the problem for mycologists that many fungi found from metagenomic approaches are only identified through molecular sequences and having the wrong species associated with a sequence can be difficult when studying community ecology composition.  This problem is not limited to fungi by any means, but recent reports find as many as 20% of fungal Intergenic Spacer (ITS) sequences are mis-attributed to the wrong species. 

There’s a nice quote in the news article from Steven Salzberg talking about the difficulties in getting sequences, especially from big centers, updated. I’m sure he is thinking of many examples, like reclassifying some Drosophila sequence traces.

Continue reading (re)Annotating GenBank

Some links


I’ve been too busy to post much these last few days, but here are a few links to some papers I found interesting in my recent browsing.

Schmitt, I., Partida-Martinez, L.P., Winkler, R., Voigt, K., Einax, E., Dölz, F., Telle, S., Wöstemeyer, J., Hertweck, C. (2008). Evolution of host resistance in a toxin-producing bacterial–fungal alliance. The ISME Journal DOI: 10.1038/ismej.2008.19

LEVASSEUR, A. (2008). FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genetics and Biology DOI: 10.1016/j.fgb.2008.01.004

Shivaji, S., Bhadra, B., Rao, R.S., Pradhan, S. (2008). Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles DOI: 10.1007/s00792-008-0144-z

Cryptococcus species deliniation

ResearchBlogging.org What delineates species boundaries in fungi? Much work has been done on biological and phylogenetic species concepts in fungi. Some concepts are reviewed in Taylor et al 2006 and in Taylor et al 2000, and applications can be seen in several pathogens such as Paraccocidiodies, Coccidioides, and the model filamentous (non-pathogenic) fungus Neurospora.

A paper in Fungal Genetics and Biology on species definitions in Cryptococcus neoformans from multi-locus sequencing seeks to provide additional treatment of the observed diversity. A large study of 117 Cryptococcus isolates were examined through multi-locus sequencing (6 loci) and identified two monophyletic lineages within C. neoformans varieties that correspond to var. neoformans and var. grubii. However within the C. gattii samples they identified four monophyletic groups consistent with deep divergences observed from whole genome trees for two strains of C. gattii, MLST, and AFLP studies. By first defining species, we can now test whether any of the species groups have different traits including prevalence in clinical settings and in nature.

BOVERS, M., HAGEN, F., KURAMAE, E., BOEKHOUT, T. (2007). Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genetics and Biology DOI: 10.1016/j.fgb.2007.12.004

Neurospora speciation through experimental evolution

ResearchBlogging.orgDettman, Anderson, and Kohn recently published a paper in BMC Evolutionary Biology on reproductive experimental evolution in two Neurospora crassa populations evolved under different selective conditions. This is a great study that complements work published last year in Nature on experimental evolution in Saccharomyces cerevisiae populations. Neurospora populations were evolved under high salt and low temperature and were started from either high diversity (interspecific crosses, N. crassa vs N. intermedia) or low diversity (intraspecific cross, two N. crassa isolates D143 (Louisiana, USA)and D69 (Ivory Coast)) as described in Figure 1. The experimentally evolved populations were then tested for asexual and sexual fitness (they were taken through complete meiotic cycle throughout the experiment to avoid insure there was selection on the sexual reproduction pathway.

Continue reading Neurospora speciation through experimental evolution

Willi Hennig Superstar

Willi HennigThe Willi Hennig Society, homebase for all good cladists, has subsidized the license fee for TNT so that it is now a freely available program (although it is not open-source). TNT implements phylogenetic analysis under parsimony with a fast tree searching algorithm. I believe TNT was one of the software tools that CIPRES was targeting for optimization as well so this may reflect some of that work.

From EvolDir.

Evolutionary morphology of mushroom-forming fungi

Blogging about Peer-Reviewed ResearchDave Hibbett wrote a great article for Mycological Research that describes the current state of systematics and evolutionary studies of morphology in mushroom-forming Agaricomycete fungi. His article, dedicated to the late, great mycologist Orson K Miller, Jr and entitled “After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century” describes the how classification and systematics has changed in the last two hundred years and macromorphology to the more than “108,000 nucleotide sequences of ‘homobasidiomycetes’, filed under 7300 unique names.”

The article contains some beautiful pictures many of which are taken from some of the eminent mycological photographers and mycologists Michael Wood and Taylor Lockwood.

Continue reading Evolutionary morphology of mushroom-forming fungi

Fungal tree of life papers

Lots of papers in Mycologia (subscription required) this month of different groups analyzing the fine-scale relationships of many different fungal clades using the loads of sequences that were generated as part of the Fungal Tree of Life project.

Some highlights – there are just too many papers in the issue to cover them all. As usual with more detailed studies of clades with molecular sequences we find that morphologically defined groupings aren’t always truly monophyletic and some species even end up being reclassified. Not that molecular sequence approaches are infallable, but for many fungi the morphological characters are not always stable and can revert (See Hibbet 2004 for a nice treatment of this in mushrooms; subscription required).

  • Meredith Blackwell and others describe the Deep Hypha research coordination network that helped coordinate all the Fungal Tree of Life-rs.
  • John Taylor and Mary Berbee update their previous dating work with new divergence dates for the fungi using as much of the fossil evidence as we have.
  • The early diverging Chytridiomycota, Glomeromycota, and Zygomycota are each described. Tim James and others present updated Chytridiomycota relationships so of which were only briefly introducted in the kingdom-wide analysis paper published last year.
  • There is a nice overview paper of the major Agaricales clades (mushrooms for the non-initiated) from Brandon Matheny as well as as individual treatment of many of the sub-clades like the cantharelloid clade (mmm chanterelles…) .
  • Relationships of the Puccinia clade are also presented – we blogged about the wheat pathogen P. graminis before.
  • A new Saccharomycetales phylogeny is presented by Sung-Oui Suh and others.
  • The validity of the Archiascomycete group is also tested (containing the fission yeast Schizosaccharomyces pombe and the mammalian pathogen Pneumocystis) and they confirm that it is basal to the two sister clades the euascomycete (containing Neurospora) and hemiascomycete (containing Saccharomyces) clades. However it doesn’t appear there are enough sampled species/genes to confirm monophyly of the group. There are/will be soon three genome sequences of Schizosaccharomyces plus one or two Pneumocystis genomes – it will be interesting to see how this story turns out if more species can be identified.

This was a monster effort by a lot of people who it is really nice to see it all have come together in what looks like some really nice papers.

Fungal Genetics 2007 details

I’m including a recapping as many of the talks as I remember. There were 6 concurrent sessions each afternoon so you have to miss a lot of talks. The conference was bursting at the seams as it was- at least 140 people had to be turned away beyond the 750 who attended.

If there was any theme in the conference it was “Hey we are all using these genome sequences we’ve been talking about getting”. I only found the overview talks that solely describe the genome solely a little dry as compared to those more focused on particular questions. I guess my genome palate is becoming refined.

Continue reading Fungal Genetics 2007 details