Tag Archives: sex

I’ll have the truffles and huitlacoche

Black TruffleA couple of papers should have captured your attention lately in the realm of fungal genomics.

One is the publication of the genome of the black truffle Tuber melanosporum. This appears as an advanced publication at Nature (OA by virtue of Nature’s agreement on genome papers) along with a NYT writeup and is a tasty exploration of the genome of an ascomycete ectomycorrhizal (ECM) fungus. There are several gems in there including the differences in transposable element content, content of gene families related to carbohydrate metabolism. This genome helps open the doorway for exploring the several independent origins of ECM in both ascomycete and basidiomycete fungi.

I’ll also point out there is some work on the analysis of mating type locus found in this genome has applied aspects suggesting that inoculation of roots with both mating types may increase truffle yields in truffle farms. Evidence for sexual reproduction is also discovered from this genome analysis based on the sexual cycle genes present and the structure of the MAT locus.  Much like what was revealed in the genome analysis of the previously ‘asexual’ species Aspergillus fumigatus (and later reconstitution of a sexual cycle), the Tuber genome has the potential for mating and is a heterothallic (outcrossing) fungus based on its mating type locus -just like many other filamentous Ascomycete species.

A second paper I encourage you take a look at (those with a Science subscription) is from Virginia Walbot’s lab on the formation of tumors by U. maydis in Maize. These tumors end up destroying the corn but can produce a delicious (to some) dish that is huitlacooche. The idea that the fungus is co-opting the host system by secreting proteins that acted in the same way as native proteins and that it has a tissue or organ specific repertoire was one that her lab has been pursuing. U. maydis can grow inside corn without detection and  the formation of tumors seems to be a manipulation of the plant as much as it is the pathogen directly taking resources from the plant.  It reminds me a bit of the production of secondary metabolites that can control plant growth like gibberellins produced by fungi.  This kind of manipulation and also ability to evade detection suggests a pretty specific set of controls that prevent the fungus from doing the wrong thing at the wrong time (to avoid detection). So they set out to see if there are a set of organ specific genes that the fungus uses during infection that would suggest a very host-specific strategy by this corn smut.

In this paper the authors evaluate the role of fungal genes specifically expressed in infection of different organs and also the role of secreted proteins in colonization of the organs.  In what is impressive and elegant work, the authors show through the use of microarrays and genetics that there is plant tissue specific gene expression of U. maydis – so infections in leaves express a different set of genes than those in seedlings.  Genetic and phenotypic evaluation of fungal strains with knockouts of sets of the predicted secreted proteins was able to confirm a role for specific secreted proteins that previously may have not had any discernible phenotype. They infect strains with knockouts of sets of genes that encode secreted proteins and compare the virulence when these strains infect individual organs of the maize host.  They showed there is significantly different virulence in the various tissues for a some of the mutants suggesting an organ-specific role for virulence of secreted proteins. They also go on to show that some of this organ specific infection requires organ-specific gene expression by evaluating maize mutants and the ability of the fungus to infect different organs.

Future work will hopefully followup to see what these secreted proteins are manipulating in the host and how they either enable virulence by protecting the pathogen, avoiding detection by turning of host responses, or co-opting host gene networks in some other way.

Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, & Wincker P (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature PMID: 20348908

Skibbe DS, Doehlemann G, Fernandes J, & Walbot V (2010). Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science (New York, N.Y.), 328 (5974), 89-92 PMID: 20360107

How to get A. fumigatus in the mood for love

ResearchBlogging.org A manuscript at Nature AOP details the success of the Dyer lab and collaborators in encouraging Aspergillus fumigatus to complete the sexual cycle under observable (e.g. laboratory) conditions. The authors are the teleomorph (sexual or perfect) stage Neosartorya fumigata for a fungus that had been previously only had an observed anamorphic stage. A. fumigatus can reproduce asexually forming structures called conidiophores which produce asexual spores called conidiospores (or mitospores as they are produced via mitosis) define the anamorph or imperfect stage, but no sexual structures such as cleistothecia that produce the packaged sexual products as ascospores. See a presentation by David Geiser (archived at the Aspergillus website) for more detail on some of the morphological and phylogenetic characters that unify the group of Eurotiales fungi.

Like several other groups of fungi, A. fumigatus was presumed to have a putative cryptic sexual stages inferred from population genetic evidence of sexual recombination, but until no telemorphs had been observed. In addition, an observed perfect stage doesn’t necessarily indicate it is easy to induce mating in laboratory conditions. Complicated media including the ever stressful V8 juice was needed to induce mating in the basidiomycete yeast Cryptococcus neoformans (Erke, J Bacteriol 1976). In fact, Christina Hull’s lab has shown we still don’t even know what ingredients in V8 juice even induce mating (Kent et al, AEM 2008)! Other fungi including Coccidioides have been implicated as cryptically sexual (Burt et al, PNAS 1996) but no one has been able to induce mating in laboratory conditions. In this case a petri plate with a individual of each mating type (since this is a heterothallic fungus), and a series of different media conditions provided an environment suitable for mating to occur.

The work in this paper follows from their previous work identifying isolates of different mating types (Paoletti, Current Biol, 2005). The discovery of sexual stage for Aspergillus fumigatus (which Bret cannot pronounce) is a boon for molecular geneticists in construction of knockout strains and ability to follow recombination. While A. nidulans is a sexual species and model system for genetics, it is useful to have more tools to directly manipulate A. fumigatus and directly test hypotheses about genes involved in pathogenicity.

This observation of meiosis in the laboratory is also is interesting to considered in light of work that RIP is active in other Aspergillus species (and also see this post) suggesting that RIP may be operating under meiotic conditions.

Isolates of different mating types have also been described for the putatively asexual Coccidioiodes (Mandell et al, EC 2007; Fraser et al, EC 2007) so it remains a possibility that we can also induce sexual recombination in laboratory conditions in this fungus.

Céline M. O’Gorman, Hubert T. Fuller, Paul S. Dyer (2008). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus Nature DOI: 10.1038/nature07528

More RIP without sex?

In followup to the Aspergillus RIP paper discussion, Jo Anne posted in the comments that her paper published in FGB about RIP in another asexual species of fungi also found that evidence for the meiosis-specific process of Repeat Induced Point-mutations (RIP).

Continue reading More RIP without sex?

RIPing in an asexual fungus

ResearchBlogging.orgA.niger conidiophoreA paper in Current Genetics describes the discovery of Repeat Induced Polymorphism (RIP) in two Euriotiales fungi.  RIP has been extensively studied in Neurospora crassa and has been identified in other Sordariomycete fungi Magnaporthe, Fusiarium. This is not the first Aspergillus species to have RIP described as it was demonstrated in the biotech workhorse Aspergillus oryzae.  However, I think this study is the first to describe RIP in a putatively asexual fungus.  The evidence for RIP is only found in transposon sequences in the Aspergillus and Penicillium.  A really interesting aspect of this discovery is RIP is thought to only occur during sexual stage, but a sexual state has never been observed for these fungi.   Continue reading RIPing in an asexual fungus

Sex in fungi: MAT locus cloned from a Zygomycete

On the cover of this week’s Nature is a picture of Phycomyces blakesleeanus Nature Coverhighlighting the discovery of the MAT locus in this Zygomycete fungus from Alex Idnurm and Joe Heitman and colleagues. While it was previously known that Zygomycetes (the Orange lineage represented by R. oryzae in the tree below) mate, the specific locus has until now, never been discovered. The authors in this study identified the MAT locus through a sequence search looking for HMG-box genes knowing that these are found the Mating Type locus in Basidiomycetes and Ascomycetes. They confirmed the identity through a through set of experiments that included PCR, sequencing and crosses of (+) and (-) strains of P. blakesleeanus, and Southern blots.

Continue reading Sex in fungi: MAT locus cloned from a Zygomycete