Tag Archives: teleomorph

How do I name thee?

ResearchBlogging.org
In a letter to the editor to the journal Nature, regarding the recently discovered/induced sexual stage in Aspergillus fumigatus, David Hawksworth argues that using the separate names for sexual (teleomorph) and asexual (anamorph) stages is confusing and unnecessary in this context.  The name Neosartorya fumigata is given to the sexual stage which was produced from two individuals which were both A. fumigatus. The letter writer makes the point that referring to a new name for the sexual stage when we already know what its anamorph is seems superfluous and overly confusing. He gives the analogy of Aspergillus nidulans where its teleomorph Emericella nidulans is “largely ignored”.

The double names for something which is the same species (i.e. has the same genomic sequence) is certainly a confusing aspect of mycology. It stems from the morphological description of species and that before DNA or molecular approaches to identification it was difficult to connect the anamorph and teleomorph stages unless you could induce the entire lifecycle in the laboratory. I think that the same name for homologous structures from different phyla is also equally confusing, but necessary aspect of how things are currently named and classified.

What researchers should described the sample/individual they are using for experiments in their manuscripts is important to avoid confusion and for readers so I think Prof Hawksworth makes an important point especially when discussing something where the anamorphs and teleomorphs are unified. Certainly an agreed upon protocol here would be quite helpful of what to preferably use when the stages have been connected.

Hawksworth, D. (2009). Separate name for fungus’s sexual stage may cause confusion Nature, 458 (7234), 29-29 DOI: 10.1038/458029c

How to get A. fumigatus in the mood for love

ResearchBlogging.org A manuscript at Nature AOP details the success of the Dyer lab and collaborators in encouraging Aspergillus fumigatus to complete the sexual cycle under observable (e.g. laboratory) conditions. The authors are the teleomorph (sexual or perfect) stage Neosartorya fumigata for a fungus that had been previously only had an observed anamorphic stage. A. fumigatus can reproduce asexually forming structures called conidiophores which produce asexual spores called conidiospores (or mitospores as they are produced via mitosis) define the anamorph or imperfect stage, but no sexual structures such as cleistothecia that produce the packaged sexual products as ascospores. See a presentation by David Geiser (archived at the Aspergillus website) for more detail on some of the morphological and phylogenetic characters that unify the group of Eurotiales fungi.

Like several other groups of fungi, A. fumigatus was presumed to have a putative cryptic sexual stages inferred from population genetic evidence of sexual recombination, but until no telemorphs had been observed. In addition, an observed perfect stage doesn’t necessarily indicate it is easy to induce mating in laboratory conditions. Complicated media including the ever stressful V8 juice was needed to induce mating in the basidiomycete yeast Cryptococcus neoformans (Erke, J Bacteriol 1976). In fact, Christina Hull’s lab has shown we still don’t even know what ingredients in V8 juice even induce mating (Kent et al, AEM 2008)! Other fungi including Coccidioides have been implicated as cryptically sexual (Burt et al, PNAS 1996) but no one has been able to induce mating in laboratory conditions. In this case a petri plate with a individual of each mating type (since this is a heterothallic fungus), and a series of different media conditions provided an environment suitable for mating to occur.

The work in this paper follows from their previous work identifying isolates of different mating types (Paoletti, Current Biol, 2005). The discovery of sexual stage for Aspergillus fumigatus (which Bret cannot pronounce) is a boon for molecular geneticists in construction of knockout strains and ability to follow recombination. While A. nidulans is a sexual species and model system for genetics, it is useful to have more tools to directly manipulate A. fumigatus and directly test hypotheses about genes involved in pathogenicity.

This observation of meiosis in the laboratory is also is interesting to considered in light of work that RIP is active in other Aspergillus species (and also see this post) suggesting that RIP may be operating under meiotic conditions.

Isolates of different mating types have also been described for the putatively asexual Coccidioiodes (Mandell et al, EC 2007; Fraser et al, EC 2007) so it remains a possibility that we can also induce sexual recombination in laboratory conditions in this fungus.

Céline M. O’Gorman, Hubert T. Fuller, Paul S. Dyer (2008). Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus Nature DOI: 10.1038/nature07528